Quantitative Evaluation of Elastic Properties of Nano-Crystalline Nickel Using Atomic Force Acoustic Microscopy
-
M. Kopycinska-Müller
, A. Caron , S. Hirsekorn , U. Rabe , Harald Natter , Rolf Hempelmann , Rainer Birringer und Walter Arnold
Atomic force acoustic microscopy (AFAM) is a near-field technique, where the vibration behavior of a micro-fabricated elastic cantilever beam in contact with a sample surface is sensitive to its local elastic properties. The resolution of this technique is given by the contact radius ac of the atomic force microscope sensor-tip on the sample surface. Taking into account only the Hertzian forces, ac depends on the static load applied by the cantilever, on the elastic constants of the tip and the sample and on the geometry of the contacting bodies. The shape of the sensor tip used in atomic force acoustic microscopy is between a sphere and a flat punch. Hence ac extends from just below 10nm to a few tens of nanometers. In this review, we give an overview of the AFAM technique, present data on the indentation moduli of nanocrystalline nickel, and discuss some of the error sources in quantitative AFAM. The AFAM indentation moduli measured are comparable to the values obtained by nanoindentation and lower than the indentation moduli calculated from ultrasonic velocity measurements. There seems to be a decrease of the indentation modulus with decreasing grain size for grain sizes below 30nm. The data are discussed taking into account X-ray diffraction and electron back-scattering data revealing some texture and macro-strain due to internal stresses in the samples investigated.
© Oldenbourg Wissenschaftsverlag
Artikel in diesem Heft
- Preface: SFB 277: Materials Dominated by their Interfaces
- Magnetic Nanorods: Genesis, Self-Organization and Applications
- Thermodynamic and Structural Investigations of Condensates of Small Molecules in Mesopores
- Precursorchemistry with Metalalkoxides and their Use for Nano-Scaled Materials
- One-Dimensional Semiconductor Nanostructures: Growth, Characterization and Device Applications
- Nanocrystalline Metals Prepared by Electrodeposition
- Investigation of Nanocrystalline Materials Using Radioactive Isotopes
- Theoretical Studies of Structural, Energetic, and Electronic Properties of Clusters
- Photoemission Investigation of the L¯-Gap Surface States on Clean and Rare Gas-Covered Noble Metal (111)-Surfaces
- Computer Simulations of Phase Transitions and Dynamics in Confined Systems
- Quantitative Evaluation of Elastic Properties of Nano-Crystalline Nickel Using Atomic Force Acoustic Microscopy
- Mechanical Properties of Nanomaterials Examined with a NI-AFM
- Equilibrium and Nonequilibrium Behaviour of Ferrofluids – Experiments and Theory
- Combinatorial Fabrication of Thin Film-Libraries and Evaluation of their Piezoelectricity by Ultrasonic Piezo-Mode Imaging
Artikel in diesem Heft
- Preface: SFB 277: Materials Dominated by their Interfaces
- Magnetic Nanorods: Genesis, Self-Organization and Applications
- Thermodynamic and Structural Investigations of Condensates of Small Molecules in Mesopores
- Precursorchemistry with Metalalkoxides and their Use for Nano-Scaled Materials
- One-Dimensional Semiconductor Nanostructures: Growth, Characterization and Device Applications
- Nanocrystalline Metals Prepared by Electrodeposition
- Investigation of Nanocrystalline Materials Using Radioactive Isotopes
- Theoretical Studies of Structural, Energetic, and Electronic Properties of Clusters
- Photoemission Investigation of the L¯-Gap Surface States on Clean and Rare Gas-Covered Noble Metal (111)-Surfaces
- Computer Simulations of Phase Transitions and Dynamics in Confined Systems
- Quantitative Evaluation of Elastic Properties of Nano-Crystalline Nickel Using Atomic Force Acoustic Microscopy
- Mechanical Properties of Nanomaterials Examined with a NI-AFM
- Equilibrium and Nonequilibrium Behaviour of Ferrofluids – Experiments and Theory
- Combinatorial Fabrication of Thin Film-Libraries and Evaluation of their Piezoelectricity by Ultrasonic Piezo-Mode Imaging