Atomic ordering in the Laves phases L1 V(Co1–xSix)2 (x = 0.43 and 0.56)
-
Matthias Conrad
Abstract
The synthesis, phase relations, and crystal structures of two truly ternary, partially ordered Laves phases occurring in the V—Co—Si system are reported. The phases termed L1 V(Co1–xSix)2 are found in two distinct phase fields next to TiMnSi-type VCoSi. This so-called E-phase emerges in the centre of the miscibility gap which separates the Co- and Si-rich Laves phase fields. Both fields accommodate several structurally distinct L-phases. The L1-phases V(Co1–xSix)2 (x = 0.43 and 0.56) crystallise in √3a × √3a superstructures of the hexagonal MgZn2 structure type. A rigorous symmetry-based analysis reveals that, at the given compositions, this type of superstructure affords sufficient structural degrees of freedom for ordering of Co and Si atoms on 4 different sites in a manner that enables tuning of hetero-atomic Co—Si interactions to an optimum.
© by Oldenbourg Wissenschaftsverlag, München
Artikel in diesem Heft
- Editorial: Crystal Chemistry of Intermetallic Compounds
- Fritz H. Laves – 100 years young
- Fritz H. Laves – an ideal for generations
- Gustav E. R. Schulze's pioneering work on Laves phases
- Preparation, phase stability and structure of the C36 Laves phase Nb1–xCo2+x
- Atom order and thermodynamic properties of the ternary Laves phase Ti(TiyNixAl1–x–y)2
- Atomic ordering in the Laves phases L1 V(Co1–xSix)2 (x = 0.43 and 0.56)
- Microscopic structures of Laves phases and structurally related compounds: a transmission electron microscopy study
- Binary rare earth Laves phases — an overview
- Binary intermetallic phases formed by Ca, Sr, Ba, Eu and Yb: similarities and differences
- Complexity of hexagonal approximants in the RE13Zn~58 system (RE = Ce, Pr, Nd, Sm, Gd, Tb and Dy)
- Reflections on symmetry and formation of axial quasicrystals
- Mosaic-like tilings derivated from o-Co4Al13 and m-Co4Al13 crystal structures
- High-pressure crystal chemistry of binary intermetallic compounds
- Re3B type intermetallics — crystal chemistry, bonding and properties
- Ti2Rh6B – a new boride with a double perovskite-like structure containing octahedral Rh6 clusters
- On the formation and crystal structure of the Pd6B phase
- Crystal growth and magnetic properties of rare earth borosilicides
- The effect of transition metal doping on thermal conductivity of YB66
- Structure refinements of iron borides Fe2B and FeB
- Cubic structure types of rare-earth intermetallics and related compounds
- Structural variations in Gd5Si4-xSnx: size vs. electronic effects
- Tin flux synthesis of rare-earth metal silicide compounds RESi1.7 (RE = Dy, Ho): a novel ordered structure derived from the AlB2 type
- Filling the CoSn host-cell: the HfFe6Ge6-type and the related structures
- Synthesis and characterization of Na2Ba4Ga2Sb6 and Li13Ba8GaSb12
- Ge40.0Te5.3I8: synthesis, crystal structure, and properties of a new clathrate-I compound
- Ag6GeS4X2 (X: Cl, Br): surprisingly no filled Laves phases but the first representatives of a new structure type
- Low- and high-temperature structures of YbCuBi
- (La3Zx)Al and (Ce3Zx)Al with Z = C, N, O: preparation, physical properties and chemical bonding of metal-rich perovskites
- Geometric variations and electron localizations in intermetallics: PbFCl type compounds
- A novel series of sphere packings with arbitrarily low density
- Books Received
Artikel in diesem Heft
- Editorial: Crystal Chemistry of Intermetallic Compounds
- Fritz H. Laves – 100 years young
- Fritz H. Laves – an ideal for generations
- Gustav E. R. Schulze's pioneering work on Laves phases
- Preparation, phase stability and structure of the C36 Laves phase Nb1–xCo2+x
- Atom order and thermodynamic properties of the ternary Laves phase Ti(TiyNixAl1–x–y)2
- Atomic ordering in the Laves phases L1 V(Co1–xSix)2 (x = 0.43 and 0.56)
- Microscopic structures of Laves phases and structurally related compounds: a transmission electron microscopy study
- Binary rare earth Laves phases — an overview
- Binary intermetallic phases formed by Ca, Sr, Ba, Eu and Yb: similarities and differences
- Complexity of hexagonal approximants in the RE13Zn~58 system (RE = Ce, Pr, Nd, Sm, Gd, Tb and Dy)
- Reflections on symmetry and formation of axial quasicrystals
- Mosaic-like tilings derivated from o-Co4Al13 and m-Co4Al13 crystal structures
- High-pressure crystal chemistry of binary intermetallic compounds
- Re3B type intermetallics — crystal chemistry, bonding and properties
- Ti2Rh6B – a new boride with a double perovskite-like structure containing octahedral Rh6 clusters
- On the formation and crystal structure of the Pd6B phase
- Crystal growth and magnetic properties of rare earth borosilicides
- The effect of transition metal doping on thermal conductivity of YB66
- Structure refinements of iron borides Fe2B and FeB
- Cubic structure types of rare-earth intermetallics and related compounds
- Structural variations in Gd5Si4-xSnx: size vs. electronic effects
- Tin flux synthesis of rare-earth metal silicide compounds RESi1.7 (RE = Dy, Ho): a novel ordered structure derived from the AlB2 type
- Filling the CoSn host-cell: the HfFe6Ge6-type and the related structures
- Synthesis and characterization of Na2Ba4Ga2Sb6 and Li13Ba8GaSb12
- Ge40.0Te5.3I8: synthesis, crystal structure, and properties of a new clathrate-I compound
- Ag6GeS4X2 (X: Cl, Br): surprisingly no filled Laves phases but the first representatives of a new structure type
- Low- and high-temperature structures of YbCuBi
- (La3Zx)Al and (Ce3Zx)Al with Z = C, N, O: preparation, physical properties and chemical bonding of metal-rich perovskites
- Geometric variations and electron localizations in intermetallics: PbFCl type compounds
- A novel series of sphere packings with arbitrarily low density
- Books Received