Article
Licensed
Unlicensed
Requires Authentication
The layer multiple-scattering method applied to phononic crystals
-
Rebecca Sainidou
Published/Copyright:
September 25, 2009
Abstract
After a brief description of the layer multiple scattering method as applied to phononic crystals, we present some results obtained by this method, relating to: crystals of polystyrene spheres in water; crystals of silica spheres in air; and crystals of steel spheres in polyester. We relate the transmission characteristics of slabs of these ma terials to the complex band structure of the corresponding infinite crystals. We emphasize aspects of the underlying physics which have not been discussed previously.
:
Received: 2004-June-10
Accepted: 2004-September-28
Published Online: 2009-9-25
Published in Print: 2005-10-1
© by Oldenbourg Wissenschaftsverlag, München
You are currently not able to access this content.
You are currently not able to access this content.
Articles in the same Issue
- Editorial: Phononic Crystals – Sonic Band-Gap Materials
- Classical wave localization and spectral gap materials
- Classical vibrational modes in phononic lattices: theory and experiment
- Scanning phononic lattices with surface acoustic waves
- Acoustic band gap measurements in waveguides with periodic resonant structures
- Experimental observation of resonant filtering in a two-dimensional phononic crystal waveguide
- Experimental study of guiding and filtering of acoustic waves in a two dimensional ultrasonic crystal
- Surface acoustic wave band gaps in micro-machined air/silicon phononic structures — theoretical calculation and experiment
- The layer multiple-scattering method applied to phononic crystals
- Tunneling and dispersion in 3D phononic crystals
- Transmission properties of locally resonant sonic materials with finite slab thickness
- Large enhancement of phononic gap in periodic and quasiperiodic elastic composites by using air inclusions
- Sound propagation in the time-domain by the Split-Operator technique
- Inverse design of phononic crystals by topology optimization
- Elastic waves in arrays of elliptic inclusions
- Books Received
Articles in the same Issue
- Editorial: Phononic Crystals – Sonic Band-Gap Materials
- Classical wave localization and spectral gap materials
- Classical vibrational modes in phononic lattices: theory and experiment
- Scanning phononic lattices with surface acoustic waves
- Acoustic band gap measurements in waveguides with periodic resonant structures
- Experimental observation of resonant filtering in a two-dimensional phononic crystal waveguide
- Experimental study of guiding and filtering of acoustic waves in a two dimensional ultrasonic crystal
- Surface acoustic wave band gaps in micro-machined air/silicon phononic structures — theoretical calculation and experiment
- The layer multiple-scattering method applied to phononic crystals
- Tunneling and dispersion in 3D phononic crystals
- Transmission properties of locally resonant sonic materials with finite slab thickness
- Large enhancement of phononic gap in periodic and quasiperiodic elastic composites by using air inclusions
- Sound propagation in the time-domain by the Split-Operator technique
- Inverse design of phononic crystals by topology optimization
- Elastic waves in arrays of elliptic inclusions
- Books Received