Experimental observation of resonant filtering in a two-dimensional phononic crystal waveguide
-
Jerôme O. Vasseur
Abstract
Transmission of acoustic waves through a two-dimensional composite material made of PVC cylinders surrounded by air is measured experimentally. The spectrum presents a very large absolute band gap in the audible frequency range. A waveguide created inside this phononic crystal by removing a row of cylinders can transmit very efficiently the waves falling inside the stop band. We show the existence of deaf modes in the band structure of the linear waveguide. Resonant filtering is also demonstrated experimentally by coupling the waveguide to a side branch resonator of variable length. Frequency filtering is observed in the form of narrow dips in the transmission spectrum of the waveguide. Most of these observations compare favorably with theoretical calculations of dispersion curves and transmission coefficients of model structures using the plane wave expansion and the finite difference time domain methods. Narrow dips similar to those of the guide with resonator are also observed in the transmission spectrum of a waveguide with a sharp bend.
© by Oldenbourg Wissenschaftsverlag, München
Articles in the same Issue
- Editorial: Phononic Crystals – Sonic Band-Gap Materials
- Classical wave localization and spectral gap materials
- Classical vibrational modes in phononic lattices: theory and experiment
- Scanning phononic lattices with surface acoustic waves
- Acoustic band gap measurements in waveguides with periodic resonant structures
- Experimental observation of resonant filtering in a two-dimensional phononic crystal waveguide
- Experimental study of guiding and filtering of acoustic waves in a two dimensional ultrasonic crystal
- Surface acoustic wave band gaps in micro-machined air/silicon phononic structures — theoretical calculation and experiment
- The layer multiple-scattering method applied to phononic crystals
- Tunneling and dispersion in 3D phononic crystals
- Transmission properties of locally resonant sonic materials with finite slab thickness
- Large enhancement of phononic gap in periodic and quasiperiodic elastic composites by using air inclusions
- Sound propagation in the time-domain by the Split-Operator technique
- Inverse design of phononic crystals by topology optimization
- Elastic waves in arrays of elliptic inclusions
- Books Received
Articles in the same Issue
- Editorial: Phononic Crystals – Sonic Band-Gap Materials
- Classical wave localization and spectral gap materials
- Classical vibrational modes in phononic lattices: theory and experiment
- Scanning phononic lattices with surface acoustic waves
- Acoustic band gap measurements in waveguides with periodic resonant structures
- Experimental observation of resonant filtering in a two-dimensional phononic crystal waveguide
- Experimental study of guiding and filtering of acoustic waves in a two dimensional ultrasonic crystal
- Surface acoustic wave band gaps in micro-machined air/silicon phononic structures — theoretical calculation and experiment
- The layer multiple-scattering method applied to phononic crystals
- Tunneling and dispersion in 3D phononic crystals
- Transmission properties of locally resonant sonic materials with finite slab thickness
- Large enhancement of phononic gap in periodic and quasiperiodic elastic composites by using air inclusions
- Sound propagation in the time-domain by the Split-Operator technique
- Inverse design of phononic crystals by topology optimization
- Elastic waves in arrays of elliptic inclusions
- Books Received