Startseite The role of OH and H2O in oxide and oxysalt minerals
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

The role of OH and H2O in oxide and oxysalt minerals

Veröffentlicht/Copyright: 24. August 2010

Abstract

Hydrogen plays an extremely important role in the structure and chemistry of the oxide and oxysalt minerals. The characteristics of this role can be profitably analyzed in a simple and intuitive fashion using bond-valence theory. For any crystal structure, the structural unit may be defined as the strongly bonded part of the structure; structural units are linked together by interstitial species, usually alkali or alkaline earth cations and (H2O)0 groups that are involved in much weaker bonding. This scheme gives a binary representation of even the most complex structure. The interaction between the structural unit and the interstitial species can be quantitatively evaluated using the valence-matching principle (Brown, 1981).

As components of the structural unit, (OH) and (H2O)0 play a major role in dictating the dimensional polymerization of the structural unit because of the very asymmetric nature of the donor-hydrogen and hydrogen…acceptor interactions. As an interstitial component, (H2O)0 can play three different roles. Interstitial (H2O)0 may bond to an interstitial cation, essentially forming a complex cation. In this role, (H2O)0 acts as a bond-valence transformer, moderating the Lewis acidity of the interstitial cations such that it matches the Lewis basicity of the structural unit and the valence-matching principle is satisfied. Interstitial (H2O)0 need not bond to an interstitial cation to occupy well-ordered atomic positions; a stable hydrogen-bonded network can occur in the interstitial regions between structural units. The role of such (H2O)0 is to satisfy the bond-valence requirements of H atoms that are part of the structural unit, propagating the bonding across the interstitial space to other parts of the structural unit. Occluded (H2O)0 may occur in some minerals. Such (H2O)0 is not bonded to interstitial cations and does not participate in a static ordered hydrogen-bond network. However, this type of (H2O)0 will still affect many of the physical properties of a mineral.

Published Online: 2010-8-24
Published in Print: 1992-2-1

© 2015 Oldenbourg Wissenschaftsverlag GmbH, Rosenheimer Str. 145, 81671 München

Artikel in diesem Heft

  1. Crystal structure of a magnesium chloride-ethylformate adduct
  2. The crystal structure of triethylenetetramine copper(II)fluorophosphate, Cu(trien)(PF6)2
  3. Crystal structure of mesogenic material – trans-4-propyl cyclohexyl-4-(trans-4-pentyl cyclohexyl) benzoate
  4. The role of OH and H2O in oxide and oxysalt minerals
  5. Redetermination of the crystal structure of diammine silver(I)-sulfate, [Ag(NH3)2]2SO4
  6. Geometrische und chemische Koordination
  7. Reppiaite, Mn5(OH)4(VO4)2, a new mineral from Val Graveglia (Northern Apennines, Italy)
  8. Crystal structures and crystal chemistry of compounds M5−pT4+pO14*
  9. Crystal chemistry of beryllophosphates: The crystal structure of moraesite, Be2(PO4)(OH) · 4H2O
  10. Beraunite: Refinement, comparative crystal chemistry, and selected bond valences
  11. Crystal structure of thallium tetrafluoroborate, TlBF4
  12. Crystal structure of (η3-syn-crotyl)-(η4-cycloocta-1,5-diene)-nickel(II) hexafluorophosphate, Ni(C8H12)(C4H7)PF6
  13. Crystal structure of (η8-cycloocta-l,3,5,7-tetraene)-(2,2′-dipyridyl)-titanium(I) chloride, Ti(C8H8)(C10H8N2)Cl
  14. Crystal structure of (η3-syn-crotyl)-(η4-cycloocta-1,5-diene)-nickel(II) trifluormethylsulfonate, Ni(C12H19)(SO2CF3)
  15. Crystal structure of μ-hydrido-μ-dicyclohexylphosphido-octacarbonyl-dirhenium, (H)(P(C6H11)2)(CO)8Re2
  16. Crystal structure of μ-dicyclohexylphosphido-dodecacarbonyl-triangulo-trirhenium, (P(C6H11)2)(Re(CO)4)3
  17. Crystal structure of di-μ3-[(pentacarbonyl-manganese)stannio(IV)]-nonacarbonyl-triangulotriiron(Fe-Fe), (SnMn(CO)5)2Fe3(CO)9
  18. Crystal structure of calcium gold aluminium (1/1/1), CaAuAl
  19. Crystal structure of calcium gold aluminium (1/0.9/3.1), CaAu0.9Al3.1
  20. Crystal structure of barium gold gallium (1/0.3/3.7), BaAu0.3Ga3.7
  21. Crystal structure of strontium gold gallium (1/1/3), SrAuGa3
  22. Crystal structure of calcium cadmium gallium (1/0.7/1.3), CaCd0.7Ga1.3
  23. Crystal structure of strontium cadmium gallium (1/1.3/0.7), SrCd1.3Ga0.7
  24. Crystal structure of strontium cadmium gallium (1/2/2), SrCd2Ga2
  25. Crystal structure of barium cadmium gallium (1/3.2/0.8), BaCd3.2Ga0.8
  26. Crystal structure of N-diphenylphosphine-l-amino-3-(2′-pyridyl)-isoquinoline-chloropalladium(II) chloride chloroform methanol solvate, (P(C6H5)2)(C9N2H6)(C5NH4)(PdCl)Cl(CHCl3)(CH3OH)
  27. Crystal structure of μ-dicyclohexylphosphido-triphenylphosphine-octacarbonyl-triangulo-copperdirhenium, (P(C6H11)2)(CO)8Re2Cu(P(C6H5)3)
  28. Crystal structure of caesium rubidium di-μ-arsenidobis(arsenidogallate), Cs5.18Rb0.82Ga2As4
  29. Crystal structure of caesium rubidium di-μ-phosphido-bis(phosphidogallate), Cs4.95Rb1.05Ga2P4
Heruntergeladen am 23.9.2025 von https://www.degruyterbrill.com/document/doi/10.1524/zkri.1992.201.3-4.183/html?lang=de
Button zum nach oben scrollen