Startseite Wirtschaftswissenschaften Conditional risk and acceptability mappings as Banach-lattice valued mappings
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Conditional risk and acceptability mappings as Banach-lattice valued mappings

  • Raimund M. Kovacevic
Veröffentlicht/Copyright: 12. März 2012
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Conditional risk and acceptability mappings quantify the desirability of random variables (e.g. financial returns) by accounting for available information. In this paper the focus lies on acceptability mappings, concave translation-equivariant monotone mappings Lp(Ω,F,ℙ) → Lp´(Ω,,ℙ) with 1 ≤ p´ ≤ p ≤ ∞, where the σ-algebras F´ ⊂ F describe the available information. Based on the order completeness of Lp(Ω,F,ℙ)-spaces, we analyze superdifferentials and concave conjugates of conditional acceptability mappings. The related results are used to show properties of two important classes of multi-period valuation functionals: SEC-functionals and additive acceptability compositions. In particular, we derive a chain rule for superdifferentials and use it for characterizing the conjugates of additive acceptability compositions and SEC-functionals.


* Correspondence address: University of Vienna, Department of Statistics and Decision Support Syst, Universitätsstrasse 5, 1010 Vienna, Österreich,

Published Online: 2012-03-12
Published in Print: 2012-03

© by Oldenbourg Wissenschaftsverlag, Vienna, Germany

Heruntergeladen am 21.12.2025 von https://www.degruyterbrill.com/document/doi/10.1524/strm.2012.1041/html?lang=de
Button zum nach oben scrollen