Startseite Wirtschaftswissenschaften Maximum likelihood estimator in a two-phase nonlinear random regression model
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Maximum likelihood estimator in a two-phase nonlinear random regression model

  • Gabriela Ciuperca
Veröffentlicht/Copyright: 25. September 2009
Veröffentlichen auch Sie bei De Gruyter Brill

Summury

We consider a two-phase random design nonlinear regression model, the regression function is discontinuous at the change-point. The errors ∊ are arbitrary, with E(∊) = 0 and E(∊2) < ∞. We prove that Koul and Qian’s results [12] for linear regression still hold true for the nonlinear case. Thus the maximum likelihood estimator r^n of the change-point r is n-consistent and the estimator θ^1n of the regression parameters θ1 is n1/2-consistent. The asymptotic distribution of n1/2^1n − θ01) is Gaussian and n(r^nr) converges to the left end point of the maximizing interval with respect to the change point. The likelihood process is asymptotically equivalent to a compound Poisson process.

:
Published Online: 2009-09-25
Published in Print: 2004-04-01

© R. Oldenbourg Verlag, München

Heruntergeladen am 21.12.2025 von https://www.degruyterbrill.com/document/doi/10.1524/stnd.22.4.335.64312/html
Button zum nach oben scrollen