Plutonium speciation affected by environmental bacteria
-
Mary P. Neu
Summary
Plutonium has no known biological utility, yet it has the potential to interact with bacterial cellular and extracellular structures that contain metal-binding groups, to interfere with the uptake and utilization of essential elements, and to alter cell metabolism. These interactions can transform plutonium from its most common forms, solid, mineral-adsorbed, or colloidal Pu(IV), to a variety of biogeochemical species that have much different physico-chemical properties. Organic acids that are extruded products of cell metabolism can solubilize plutonium and then enhance its environmental mobility, or in some cases facilitate plutonium transfer into cells. Phosphate- and carboxylate-rich polymers associated with cell walls can bind plutonium to form mobile biocolloids or Pu-laden biofilm/mineral solids. Bacterial membranes, proteins or redox agents can produce strongly reducing electrochemical zones and generate molecular Pu(III/IV) species or oxide particles. Alternatively, they can oxidize plutonium to form soluble Pu(V) or Pu(VI) complexes. This paper reviews research on plutonium-bacteria interactions and closely related studies on the biotransformation of uranium and other metals.
© Oldenbourg Wissenschaftsverlag, München
Articles in the same Issue
- Preface: Chemical Speciation
- Transport methods as complementary tools for speciation purposes
- Contribution of hyphenated CE-ICP/MS in metal/protein interactions studies
- Interfacing capillary electrophoresis with inductively coupled plasma mass spectrometry for redox speciation of plutonium
- Preliminary speciation study of Co(II)-citrate system by ion pairing-reversed phase chromatography coupled to UV detector
- Resistance, accumulation and transformation of selenium by the cyanobacterium Synechocystis sp. PCC 6803 after exposure to inorganic SeVI or SeIV
- Uranium(VI) complexation in cell culture medium: influence of speciation on Normal Rat Kidney (NRK-52E) cell accumulation
- Actinide uptake by transferrin and ferritin metalloproteins
- Plutonium speciation affected by environmental bacteria
- Influence of thermodynamic database on the modelisation of americium(III) speciation in a simulated biological medium
- The OECD/NEA TDB review of selected organic ligands
Articles in the same Issue
- Preface: Chemical Speciation
- Transport methods as complementary tools for speciation purposes
- Contribution of hyphenated CE-ICP/MS in metal/protein interactions studies
- Interfacing capillary electrophoresis with inductively coupled plasma mass spectrometry for redox speciation of plutonium
- Preliminary speciation study of Co(II)-citrate system by ion pairing-reversed phase chromatography coupled to UV detector
- Resistance, accumulation and transformation of selenium by the cyanobacterium Synechocystis sp. PCC 6803 after exposure to inorganic SeVI or SeIV
- Uranium(VI) complexation in cell culture medium: influence of speciation on Normal Rat Kidney (NRK-52E) cell accumulation
- Actinide uptake by transferrin and ferritin metalloproteins
- Plutonium speciation affected by environmental bacteria
- Influence of thermodynamic database on the modelisation of americium(III) speciation in a simulated biological medium
- The OECD/NEA TDB review of selected organic ligands