Artikel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
Conformal mapping of o-minimal corners
-
Tobias Kaiser
Veröffentlicht/Copyright:
15. März 2012
Abstract
We say that a simply connected domain in the plane has an o-minimal corner at the origin if its boundary at the origin is given by two curves forming a corner of nonzero angle which are definable in a given o-minimal structure. We investigate the mapping function at o-minimal corners. We describe the asymptotic behaviour if the boundary curves are definable in an arbitrary polynomially bounded o-minimal structure. If they are definable in the o-minimal structure ℝanℝ we establish an asymptotic expansion in terms of a generalized power series with logarithmic perturbation.
Published Online: 2012-03-15
Published in Print: 2012-03
© by Oldenbourg Wissenschaftsverlag, Passau, Germany
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- Control of the isoperimetric deficit by the Willmore deficit
- Sharp estimates for various trigonometric sums
- Conformal mapping of o-minimal corners
- The genesis of convolution in Fourier analysis with applications
- Some arithmetical applications of Newton´s interpolation series
- Erratum to: Approximation schemes for solving disturbed control problems with non-terminal time and state constraints
Artikel in diesem Heft
- Control of the isoperimetric deficit by the Willmore deficit
- Sharp estimates for various trigonometric sums
- Conformal mapping of o-minimal corners
- The genesis of convolution in Fourier analysis with applications
- Some arithmetical applications of Newton´s interpolation series
- Erratum to: Approximation schemes for solving disturbed control problems with non-terminal time and state constraints