Artikel
Lizenziert
Nicht lizenziert
Erfordert eine Authentifizierung
Holomorphic Besov spaces in the polydisc and bounded Toeplitz operators
-
Anahit V. Harutyunyan
Veröffentlicht/Copyright:
19. Oktober 2010
Abstract
The definition of the holomorphic, weighted Besov spaces Bp(α) in the n-dimensional polydisc is extended to all 0 < p < +∞, 1 − p < α < +∞. Then Toeplitz´ operators are sidered in Bp(α) for 1 ≤ p < ∞, and the symbols {h} for which the Toeplitz operators {Th} induce bounded operators Th : Bp(α) → Bp(α) are described. As an application, a division theorem on “good inner” functions is obtained in Bp(α).
Published Online: 2010-10-19
Published in Print: 2010-10
© by Oldenbourg Wissenschaftsverlag, Yerevan 25, Germany
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Sie haben derzeit keinen Zugang zu diesem Inhalt.
Artikel in diesem Heft
- On graphical foliations and the global existence of Euler´s multiplier
- Holomorphic Besov spaces Bp(ω) (0 < p < 1) on the polydisc
- Holomorphic Besov spaces in the polydisc and bounded Toeplitz operators
- The Stieltjes constants, their relation to the ηj coefficients, and representation of the Hurwitz zeta function
- On a generalization of a formula of Ser and applications to the Riemann zeta function and to Dirichlet L-series
Schlagwörter für diesen Artikel
Besov space;
polydisc;
bounded Toeplitz operator;
division by "good inner" functions
Artikel in diesem Heft
- On graphical foliations and the global existence of Euler´s multiplier
- Holomorphic Besov spaces Bp(ω) (0 < p < 1) on the polydisc
- Holomorphic Besov spaces in the polydisc and bounded Toeplitz operators
- The Stieltjes constants, their relation to the ηj coefficients, and representation of the Hurwitz zeta function
- On a generalization of a formula of Ser and applications to the Riemann zeta function and to Dirichlet L-series