Startseite Enclosure, separation, and computation of the zeros of exponential trinomials with constant coefficients and real exponential points
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Enclosure, separation, and computation of the zeros of exponential trinomials with constant coefficients and real exponential points

  • Fritz G. Boese
Veröffentlicht/Copyright: 25. September 2009
Analysis
Aus der Zeitschrift Analysis Band 27 Heft 1

After having explained the underlying motivations, we study the location of the zeros of the functions T(z) := Aeaz+Bebz+Cecz of the complex variable z with complex coefficients A, B, C and real a < b < c. As normal form of T(z)=0 serves the equation e-pz/2·sinh (z/2)=P with a complex parameter P and a real p ∈ (-1,1). The problem of finding all solutions z of this equation is reduced to the calculation of the unique solution in a horizontal fundamental strip F := { z ∈ C: -π < Im(z) ≤ π }. By detailed estimations, we find tight enclosures for the zero in F. Series expansions and algorithms to find the zero z in F are propounded. A complete stability analysis for real trinomials is given. In a discussion, the problem is set into a wider perspective.

Received: 2006-9-29
Published Online: 2009-9-25
Published in Print: 2007-8-1

© Oldenbourg Wissenschaftsverlag

Heruntergeladen am 10.9.2025 von https://www.degruyterbrill.com/document/doi/10.1524/anly.2007.27.1.1/pdf
Button zum nach oben scrollen