Acylthiourea derivatives for the colorimetric detection of Cu(II), Hg(II) and Fe(III) in aqueous solution
-
Eman F. H. ALZaimoor
, Noor Janahi
, Zaid Khaled Bucheer
, Gul Shahzada Khan
, Awal Noorund Ezzat Khan
Abstract
Acylthiourea compounds, functionalized with carbonyl (C=O), thioyl (C=S), and nitrogen-containing groups, offer multiple coordination sites for binding metal ions in environmental media. These interactions promote stable ligand-metal complexes, making them effective colorimetric sensors for metal ion detection. In this study, six acylthiourea derivatives were synthesized and evaluated as naked-eye colorimetric sensors in aqueous media. Five derivatives namely 4-(3-benzoylthioureido)benzoic acid), N-((4-methoxyphenyl)carbamothioyl)benzamide), N-((4 acetamidophenyl)carbamothioyl)benzamide), N-((3-methylpyridin-2-yl)carbamothioyl) benzamide), and N-((2-nitrophenyl)carbamothioyl)benzamide) exhibited visual response towards Cu(II) and Hg(II) with absorption bands at 420–445 nm and a noticeable response toward Fe(III), producing orange solutions with absorption below 490 nm. One derivative, N-(pyridin-2-ylcarbamothioyl)benzamide) demonstrated limited colorimetric sensing responses toward Fe(III) and Cu(II). Meanwhile, N-((2-nitrophenyl)carbamothioyl)benzamide, exhibited broad multi-ion recognition behaviour toward Mo(VI), Cr(III), and several divalent metal ions. Detection efficiency was assessed through naked-eye observations and UV–vis absorption spectra. Significant optical changes were observed in the UV region, confirming complex formation, while broad peaks in the visible range limited precise wavelength assignment. Although sensitivity limitations were noted, the results highlight the potential of acylthiourea-based single molecule colorimetric sensors for rapid, low-cost environmental monitoring, with scope for further optimization through improved color intensity and signal enhancement.
Acknowledgement
The Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University Saudi Arabia is gratefully acknowledged for financial support.
-
Research ethics: Not applicable.
-
Informed consent: All authors provided informed consent prior to their inclusion in the manuscript, in accordance with ethical research guidelines.
-
Author contributions: The authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
-
Research funding: This work was supported by the Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research, King Faisal University Saudi Arabia [Grant No. KFU251101].
-
Data availability: Schematic diagrams of the synthesis of products and Spectra (FTIR, PXRD, 13C-NMR, 1H-NMR and UV-visible) are included as supplementary information material and can be accessed directly from the main page of the journal.
References
1. Ali, H.; Khan, E.; Ilahi, I. Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals: Environmental Persistence, Toxicity, and Bioaccumulation. J. Chem. 2019, 2019 (1), 6730305. https://doi.org/10.1155/2019/6730305.Suche in Google Scholar
2. Abd El-Raheem, H.; Helim, R.; Hassan, R. Y. A.; Youssef, A. F. A.; Korri-Youssoufi, H.; Kraiya, C. Electrochemical Methods for the Detection of Heavy Metal Ions: From Sensors to Biosensors. Microchem. J. 2024, 207, 112086. https://doi.org/10.1016/j.microc.2024.112086.Suche in Google Scholar
3. Midhat, L.; Mandi, L.; Ouazzani, N.; Tounsi, A.; Zine, H.; Merzouki, H. Metallic Trace Elements in Soil: Persistence, Toxicity, Bioaccumulation, and Biological Remediation. In Nutrition and Human Health: Effects and Environmental Impacts; Chatoui, H.; Merzouki, M.; Moummou, H.; Tilaoui, M.; Saadaoui, N.; Brhich, A., Eds.; Springer International Publishing: Cham, 2022; pp. 55–69.10.1007/978-3-030-93971-7_5Suche in Google Scholar
4. Edo, G. I.; Samuel, P. O.; Oloni, G. O.; Ezekiel, G. O.; Ikpekoro, V. O.; Obasohan, P.; Ongulu, J.; Otunuya, C. F.; Opiti, A. R.; Ajakaye, R. S.; Essaghah, A. E. A.; Agbo, J. J. Environmental Persistence, Bioaccumulation, and Ecotoxicology of Heavy Metals. Chem. Ecol. 2024, 40 (3), 322–349; https://doi.org/10.1080/02757540.2024.2306839.Suche in Google Scholar
5. Phan-Van, T.; Pham-Quang, H.; Do, A. D. Cascara Kombucha Potential as a Functional Food for Fasting Glucose Regulation, Cholesterol Control, and Liver Function Modulation: In vitro and in vivo Study. Int. J. Food Sci. Technol. 2024, 59 (11), 8908–8916; https://doi.org/10.1111/ijfs.17477.Suche in Google Scholar
6. Siregar, E.; Jumilawaty, E.; Tanjung, M.; Syafitri, A.; Kusmana, C.; Basyuni, M.; Rahmania, R. Bioaccumulation of Heavy Metals by Acanthus ilicifolius in Polluted Mangrove Ecosystems. Emerg. Sci. J. 2025, 9, 557–568; https://doi.org/10.28991/ESJ-2025-09-02-03.Suche in Google Scholar
7. Ali, H.; Khan, E. Bioaccumulation of Non-essential Hazardous Heavy Metals and Metalloids in Freshwater Fish. Risk to Human Health. Environ. Chem. Lett. 2018, 16 (3), 903–917; https://doi.org/10.1007/s10311-018-0734-7.Suche in Google Scholar
8. Hasan Alzaimoor, E. F.; Khan, E. Metal–Organic Frameworks (MOFs)-Based Sensors for the Detection of Heavy Metals: A Review. Crit. Rev. Anal. Chem. 2024, 54 (8), 3016–3037; https://doi.org/10.1080/10408347.2023.2220800.Suche in Google Scholar PubMed
9. Shanmugavel, A.; Rene, E. R.; Balakrishnan, S. P.; Krishnakumar, N.; Jose, S. P. Heavy Metal Ion Sensing Strategies Using Fluorophores for Environmental Remediation. Environ. Res. 2024, 260, 119544. https://doi.org/10.1016/j.envres.2024.119544.Suche in Google Scholar PubMed
10. Al-Zaimoor, E. F. H.; Khan, E. Enhancing Colorimetric Sensing Efficiency of Dipicolinic and Phthalic Acid Through Hydrogen Bonding Toward Metal Ions in Aqueous Medium. Chem. Pap. 2025, 79, 1455–1475; https://doi.org/10.1007/s11696-024-03868-7.Suche in Google Scholar
11. Hamedan, N.; Hasan, S.; Zaki, H.; Alias, N. Colorimetric Chemosensor of Symmetrical Benzoylthiourea Derivatives as for Detection of Cu2+ in Aqueous Solution. In Paper presented at the IOP Conference Series: Materials Science and Engineering, IOP Publishing, Vol. 172, 2017.10.1088/1757-899X/172/1/012038Suche in Google Scholar
12. Kalaiyarasi, A.; Haribabu, J.; Gayathri, D.; Gomathi, K.; Bhuvanesh, N.; Karvembu, R.; Biju, V. Chemosensing, Molecular Docking and Antioxidant Studies of 8-Aminoquinoline Appended Acylthiourea Derivatives. J. Mol. Struct. 2019, 1185, 450–460; https://doi.org/10.1016/j.molstruc.2019.02.098.Suche in Google Scholar
13. Khan, A.; Dawar, P.; De, S. A Deep Dive into Thiourea‐Based Sensors for Cation Sensing. ChemistrySelect 2024, 9 (26), e202400920; https://doi.org/10.1002/slct.202400920.Suche in Google Scholar
14. Khan, E.; Khan, S.; Gul, Z.; Muhammad, M. Medicinal Importance, Coordination Chemistry with Selected Metals (Cu, Ag, Au) and Chemosensing of Thiourea Derivatives. A Review. Crit. Rev. Anal. Chem. 2021, 51 (8), 812–834; https://doi.org/10.1080/10408347.2020.1777523.Suche in Google Scholar PubMed
15. Mitrea, D. G.; Cîrcu, V. Synthesis and Characterization of Novel Acylthiourea Compounds Used in Ions Recognition and Sensing in Organic Media. Spectrochim. Acta Mol. Biomol. Spectrosc. 2021, 258, 119860; https://doi.org/10.1016/j.saa.2021.119860.Suche in Google Scholar PubMed
16. Selcuk, O.; Azizi, N.; Aminzai, M. T.; Seferoglu, Z.; Erben, M. F.; Nural, Y. Acyl Thiourea Derivatives: Versatile Tools for Chemosensing and Heavy Metal Remediation. J. Environ. Chem. Eng. 2024, 12 (6), 114279. https://doi.org/10.1016/j.jece.2024.114279.Suche in Google Scholar
17. Zahra, U.; Saeed, A.; Fattah, T. A.; Flörke, U.; Erben, M. F. Recent Trends in Chemistry, Structure, and Various Applications of 1-Acyl-3-Substituted Thioureas: A Detailed Review. RSC Adv. 2022, 12 (20), 12710–12745; https://doi.org/10.1039/d2ra01781d.Suche in Google Scholar PubMed PubMed Central
18. Nural, Y.; Karasu, E.; Keleş, E.; Aydıner, B.; Seferoğlu, N.; Efeoğlu, Ç.; Şahin, E.; Seferoğlu, Z.; Seferoğlu, Z. Synthesis of Novel Acylthioureas Bearing Naphthoquinone Moiety as Dual Sensor for High-Performance Naked-Eye Colorimetric and Fluorescence Detection of CN− and F− Ions and its Application in Water and Food Samples. Dyes Pigm. 2022, 198, 110006. https://doi.org/10.1016/j.dyepig.2021.110006.Suche in Google Scholar
19. Zhang, Z.; Lu, S.; Sha, C.; Xu, D. A Single Thiourea-Appended 1, 8-Naphthalimide Chemosensor for Three Heavy Metal Ions: Fe3+, Pb2+, and Hg2+. Sensor. Actuator. B Chem. 2015, 208, 258–266; https://doi.org/10.1016/j.snb.2014.10.136.Suche in Google Scholar
20. Taha, A.; Farooq, N.; Singh, N.; Hashmi, A. A. Recent Developments in Schiff Base Centered Optical and Chemical Sensors for Metal Ion Recognition. J. Mol. Liq. 2024, 401, 124678. https://doi.org/10.1016/j.molliq.2024.124678.Suche in Google Scholar
21. Hosseinjani, H.; Mahmoodi, N.; Pasandideh Nadamani, M.; Taheri, A. Novel Synthesized Azo-Benzylidene-Thiourea as Dual Naked-Eye Chemosensor for Selective Detection of Hg2+ and CN¯ Ions. J. Photochem. Photobiol. Chem. 2020, 391, 112365; https://doi.org/10.1016/j.jphotochem.2020.112365.Suche in Google Scholar
22. Lin, Q.; Chen, P.; Liu, J.; Fu, Y.-P.; Zhang, Y.-M.; Wei, T.-B. Colorimetric Chemosensor and Test Kit for Detection Copper(II) Cations in Aqueous Solution with Specific Selectivity and High Sensitivity. Dyes Pigm. 2013, 98 (1), 100–105. https://doi.org/10.1016/j.dyepig.2013.01.024.Suche in Google Scholar
23. Udhayakumari, D.; Velmathi, S.; Parthiban, V.; Wu, S.-P. Anthracene Coupled Thiourea as a Colorimetric Sensor for F-/Cu2+ and Fluorescent Sensor for Hg2+/Picric Acid. J. Lumin. 2015, 161, 411–416; https://doi.org/10.1016/j.jlumin.2015.01.052.Suche in Google Scholar
24. Raza, M.A.; Sharif, A.; Danish, M.; Rehman, S.U.; Budzianowski, A.; Maurin, J.K. Theoretical and Experimental Investigation of Thiourea Derivatives: Synthesis, Crystal Structure, in silico and in vitro Biological Evaluation. Bull. Chem. Soc. Ethiop. 2022; https://doi.org/10.4314/bcse.v35i3.10. Suche in Google Scholar
25. Abu El-Reash, G. M.; Taha, F. I.; Badr, G. Complexes of Copper(II) with Some New Thiocarbamide Derivatives. Transition Met. Chem. 1990, 15 (2), 116–119; https://doi.org/10.1007/BF01023899.Suche in Google Scholar
26. Biasi-Garbin, R.; Fabris, M.; Morguette, A.; Andriani, G.; Cabral, W.; Pereira, P.; Yamada‐Ogatta, S. Vitro Antimicrobial Screening of Benzoylthioureas: Synthesis, Antibacterial Activity Toward Streptococcus Agalactiae and Molecular Docking Study. ChemistrySelect 2022, 7; https://doi.org/10.1002/slct.202202117.Suche in Google Scholar
27. Jihane, A.; Abudunia, A.-M.; Eljaoudi, R.; Bennani, f. e.; Ansar, M.; Ibrahimi, A.; Abudunia, A.-M. Synthesis, Anti-Hypoxic Activity and Molecular Docking Studies of New Quinazolinone-4 Derivatives. J. Sci. Technol. 2018, 23, 5–16.Suche in Google Scholar
28. Kalidasan, M.; Nagarajaprakash, R.; Forbes, S.; Mozharivskyj, Y.; Rao, K. Synthesis, Spectroscopic and Molecular Studies of Half-Sandwich η6-Arene Ruthenium, Cp* Rhodium and Cp* Iridium Metal Complexes with Bidentate Ligands. Z. Anorg. Allg. Chem. 2015, 641; https://doi.org/10.1002/zaac.201400491.Suche in Google Scholar
29. Liu, X.; Xu, Z.; Liang, J.; Yu, L.; Ren, P.; Zhou, H.-B.; Wu, S.; Lan, K. Identification of a Novel Acylthiourea-Based Potent Broad-Spectrum Inhibitor for Enterovirus 3D Polymerase in vitro and in vivo. Antiviral Res. 2023, 213, 105583. https://doi.org/10.1016/j.antiviral.2023.105583.Suche in Google Scholar PubMed
30. Alorabi, A. Q.; Abdelbaset, M.; Zabin, S. A. Colorimetric Detection of Multiple Metal Ions Using Schiff Base 1-(2-Thiophenylimino)-4-(N-Dimethyl)Benzene. Chemosensors 2020, 8 (1); https://doi.org/10.3390/chemosensors8010001.Suche in Google Scholar
31. Khan, U. A.; Badshah, A.; Tahir, M. N.; Khan, E. Gold(I), Silver(I) and Copper(I) Complexes of 2,4,6-Trimethylphenyl-3-Benzoylthiourea; Synthesis and Biological Applications. Polyhedron 2020, 181, 114485. https://doi.org/10.1016/j.poly.2020.114485.Suche in Google Scholar
32. Rahman, F. U.; Bibi, M.; Khan, E.; Shah, A. B.; Muhammad, M.; Tahir, M. N.; Shahzad, A.; Ullah, F.; Zahoor, M.; Alamery, S.; Batiha, G. E. Thiourea Derivatives, Simple in Structure but Efficient Enzyme Inhibitors and Mercury Sensors. Molecules 2021, 26 (15), 4506; https://doi.org/10.3390/molecules26154506.Suche in Google Scholar PubMed PubMed Central
33. Hasan, S.; Hamedan, N. A.; Zaki, H. M. Application of P-Dimethylaminobenzaldehyde Benzoylthiourea as a Colorimetric Chemosensor for Detection of Cu2+ in Aqueous Solution. Int. J. Chem. Eng. Appl. 2017, 8, 22–27; https://doi.org/10.18178/ijcea.2017.8.1.625.Suche in Google Scholar
34. Obaleye, J. A.; Orjiekwe, C. L.; Famurewa, O. Synthesis, Characterization and Antimicrobial Activity of Cobalt (II) and Nickel (II) Complexes of Acetyl Derivatives of Urea and Thiourea. Indian J. Chem. 1995, 34, 31–38.Suche in Google Scholar
35. Ullah, S. A.; Saeed, A.; Azeem, M.; Haider, M. B.; Erben, M. F. Exploring the Latest Trends in Chemistry, Structure, Coordination, and Diverse Applications of 1-Acyl-3-Substituted Thioureas: A Comprehensive Review. RSC Adv. 2024, 14 (25), 18011–18063; https://doi.org/10.1039/d4ra02567a.Suche in Google Scholar PubMed PubMed Central
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/zpch-2025-0147).
© 2025 Walter de Gruyter GmbH, Berlin/Boston