Startseite Investigation of hawleyite-type cadmium sulfide under the influence of acoustic shockwaves
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Investigation of hawleyite-type cadmium sulfide under the influence of acoustic shockwaves

  • Yoga Indra Eniya Raveendran ORCID logo , Vijaykumar Krishnan , Martin Britto Dhas Sathiyadhas Amalapushpam und Vigneashwari Balasubramanian ORCID logo EMAIL logo
Veröffentlicht/Copyright: 27. Oktober 2025

Abstract

Cadmium sulfide (CdS) is an excellent semiconducting material which holds applications for optoelectronics and energy storage technologies. Though the response of the hawleyite type-CdS to the extreme environmental conditions, such as acoustic shockwaves, remains unrevealed. In this work, cadmium sulfide (CdS) QDs were synthesized by the chemical precipitation method, and the acoustic shockwave irradiated experimental findings on hawleyite-type cubic CdS QDs with structural, optical, and luminescent properties. The present work deals with the impact of 200 and 400 acoustic shock pulses with a Mach number of 1.5 on the CdS QDs. The analytical techniques, such as powder X-ray diffraction (PXRD), High-resolution transmission electron microscopy (HRTEM), and Selected area electron diffraction (SAED), Ultraviolet -visible diffuse reflectance spectroscopy (UV-Vis-DRS), and photoluminescence spectroscopy (PL), were employed for analysis. The obtained results from the PXRD and HRTEM study demonstrate the degree of crystallinity and structural properties were strongly affected under the shock-treated conditions. Interestingly, from the SAED pattern, it could be seen that the cubic phase of CdS was retained even up to 400 doses of shock pulses, with each pulse having a transient pressure and temperature of 0.59 MPa and 520 K, respectively. The optical absorption spectrum suggests the fine-tuning of the bandgap from 2.52 eV to 2.44 eV under the exposure of shock pulses on CdS QDs. The high intensity of the photoluminescence spectrum at 400 shock-treated conditions ensures the reduction in strain rates, which in turn promotes good thermal stability for the usage of CdS QDs in efficient solar cell applications. As a result, the improvement of the material’s property without altering the crystallographic structure under the exposure of acoustic shock pulses establishes an innovative pathway that offers new directions for materials processing in optoelectronics and next-generation functional technologies.


Corresponding author: Vigneashwari Balasubramanian, Department of Physics, Government Arts College for Men, Krishnagiri, Tamil Nadu, India, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: Yoga Indra Eniya Raveendran – contributed to investigation, data analysis and writing the original draft, Vijaykumar Krishnan – contributed to data analysis, Martin Britto Dhas Sathiyadhas Amalapushpam – contributed to formal analysis, Vigneashwari Balasubramanian – supervision, editing and conceptualization.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors reported no potential conflict of interest.

  6. Research funding: None declared.

  7. Data availability: All the data used are within the manuscript.

References

1. Banerjee, R.; Jayakrishnan, R.; Ayyub, P. J. Physic. Condens. Matter 2000, 12, 10647; https://doi.org/10.1088/0953-8984/12/50/325.Suche in Google Scholar

2. Tyagi, C.; Sharma, A. &K. R. J. Non-Oxide Glasses. 2014, 6 (2), 23–26.Suche in Google Scholar

3. Chen, Y.; Rosenzweig, Z. Anal. Chem. 2002, 74 (19), 5132–5138. https://doi.org/10.1021/ac0258251.Suche in Google Scholar PubMed

4. Bodo, B.; Kalita, P. K. AIP Conf. Proc. 2010, 1276, 31–36.10.1063/1.3504319Suche in Google Scholar

5. Denzier, D.; Olschewski, M.; Sattler, K. J. Appl. Phys. 1998, 84 (5), 2841–2845.10.1063/1.368425Suche in Google Scholar

6. Zhang, H.; Chen, X.; Li, Z.; Kou, J.; Yu, T.; Zou, Z. J. Phys. D: Appl. Phys. 2007, 40 (21), 6846–6849; https://doi.org/10.1088/0022-3727/40/21/054.Suche in Google Scholar

7. Lu, H. Y.; Chu, S. Y.; Cyst, J. Growth 2004, 265, 476–48.10.1016/j.jcrysgro.2004.02.011Suche in Google Scholar

8. Peng, H.; Liuyang, B.; Lingjie, Y.; Jinlin, L.; Fangli, Y.; Yunfa, C. Nanoscale Res. Lett. 2003, 4, 1047–1053; https://doi.org/10.1007/s11671-009-9358-y.Suche in Google Scholar PubMed PubMed Central

9. Tamborra, M.; Striccoli, M.; Comparelli, R.; Curri, M. L.; Petrella, A.; Agostiano, A. Nanotechnology 2004, 15, 5240.10.1088/0957-4484/15/4/023Suche in Google Scholar

10. Tessler, N.; Medvedev, V.; Kazes, M.; Kan, S.; Banin, U. Science 2002, 295, 1506; https://doi.org/10.1126/science.1068153.Suche in Google Scholar PubMed

11. Klimov, V. L.; Amikhailowsky, A.; Xu, S.; Malko, A.; Hallingsworth, J. A.; Leather dole, C. A. Science 2000, 290, 340.10.1126/science.290.5490.314Suche in Google Scholar PubMed

12. Battaglia, D.; Peng, X. Nano Lett. 2002, 2, 1027; https://doi.org/10.1021/nl025687v.Suche in Google Scholar

13. Abdulkhadar, M.; Thomas, B. Nanostruct. Mater. 1995, 5, 289; https://doi.org/10.1016/0965-9773-95-00237-9.Suche in Google Scholar

14. Xin-Yao, Yu; Yu, Le; Wen, X.; Lou, D. Adv. Energy Mater. 2016, 6 (3), 1501333. https://doi.org/10.1002/aenm.201501333.Suche in Google Scholar

15. Alivisatos, A. P. Science 1996, 271, 933–937; https://doi.org/10.1126/science.271.5251.933.Suche in Google Scholar

16. Buhro, W. E.; Colvin, V. L. Nat. Mater. 2003, 2, 138–139; https://doi.org/10.1038/nmat844.Suche in Google Scholar PubMed

17. Bansal, P.; Jaggi, N.; Rohilla, S. K. Res. J.Chem. Sci. 2012, 8, 69.Suche in Google Scholar

18. Jaiswal, J. K., & Simon, S. M. Trends Cell Biol. 2004, 14(9):497-504. https://doi.org/10.1016/j.tcb.2004.07.012.Suche in Google Scholar PubMed

19. Bruchez, M.; Moronne, M.; Gin, P.; Weiss, S.; Alivisatos, A. P. Science 1998, 281 (5385), 2013–2016; https://doi.org/10.1126/science.281.5385.2013.Suche in Google Scholar PubMed

20. Michalet, X.; Pinaud, F. F.; Bentolila, L. A.; Tsay, J. M.; Doose, S. J. J. L.; Li, J. J.; Weiss, S.; Wu, A. M.; Gambhir, S. S. Science 2005, 307 (5709), 538–544; https://doi.org/10.1126/science.1104274.Suche in Google Scholar PubMed PubMed Central

21. Li, H.; Xi, W.; Junqi, Xu.; Qi, Z.; Yoshio, B.; Dmitri, G.; Ying, Ma.; Zhai, T. Adv. Mater. 2013, 2522, 3017–3037.10.1002/adma.201300244Suche in Google Scholar PubMed

22. Gan, F. Y.; Shih, I. IEEE Trans. Electron. Dev. 2002, 49, 15–18; https://doi.org/10.1109/16.974742.Suche in Google Scholar

23. Schmitt-Rink, S.; Chemla, D. S.; Miller, D. A. B. Adv. Phys. 1989, 38, 89–188; https://doi.org/10.1080/00018738900101102.Suche in Google Scholar

24. Balu, R.; Panneerselvam, A.; Ramalingam, R. J.; Devendrapandi, G.; Subburaj, S.; Anand, S.; Veerasamy, U. S.; Palani, S. J.Energy Storage. 2023, 72c (25), 108447; https://doi.org/10.1016/j.est.2023.108447.Suche in Google Scholar

25. Banerjee, R.; Jayakrishnan, R.; Ayyub, P. J. Phys.: Condens. Matter 2000, 12, 10647–10654; https://doi.org/10.1088/0953-8984/12/50/325.Suche in Google Scholar

26. Ricolleau, C.; Audinet, L.; Gandais, M.; Gacoin, T. Eur. Phys. J. D. 1999, 9, 565–570. https://doi.org/10.1007/PL00010951.Suche in Google Scholar

27. Romeo, N.; Bosio, A.; Canevari, V.; Podesta, A. Sol. Energy . 2004, 77 (6), 795–801; https://doi.org/10.1016/j.solener.2004.07.011.Suche in Google Scholar

28. Unni, C.; Philip, D.; Gopchandran, K. G. Spectrochim. Acta. A. 2008, 71, 1402–1407; https://doi.org/10.1016/j.saa.2008.04.023.Suche in Google Scholar PubMed

29. Kashiwaba, Y.; Isojima, K.; Ohta, K. Sol. Energy Mater. Sol. Cells 2003, 75, 253.10.1016/S0927-0248(02)00167-8Suche in Google Scholar

30. Mercy, A.; Selvaraj, R. S.; Boaz, B. M.; Anandhi, A. J.; Kanagadurai, R. Indian J. Pure Appl. Phys. 2013, 51, 448.Suche in Google Scholar

31. Phuruangrat, A.; Thongtem, T.; Thongtem, S. J. Exp. Nanosci. 2009, 4, 47; https://doi.org/10.1080/17458080802654486.Suche in Google Scholar

32. Jinxin, Z.; Gaoling, Z.; Gaorong, H. Chem. Chin 2007, 2, 98.Suche in Google Scholar

33. Marandi, M.; Taghavinia, N.; Iraji, A.; Mahadavi, S. M. Nanotechnology 2005, 16, 334.10.1088/0957-4484/16/2/027Suche in Google Scholar PubMed

34. Tong, H.; Zhu, Y. J. Nanotechnology 2006, 17, 845; https://doi.org/10.1088/0957-4484/17/3/039.Suche in Google Scholar

35. Singh, V.; Chauhan, P. J. Phys. Chem. Solids 2009, 70, 1074; https://doi.org/10.1016/j.jpcs.2009.05.024.Suche in Google Scholar

36. Xiong, S.; Xi, B.; Qian, Y. J.Phys. Chem. C. 2010, 114, 14029. 15.10.1021/jp1049588Suche in Google Scholar

37. Yao, W. T.; Yu, S. H.; Liu, S. J.; Chen, J. P.; Liu, X. M.; Li, F. Q. J.Phys.Chem B. 2006, 110, 11704; https://doi.org/10.1021/jp060164n.Suche in Google Scholar PubMed

38. Cao, B. L.; Jiang, Y.; Wang, C.; Wang, W. H.; Wang, L. Z.; Niu, M.; Zhang, W. J.; Li, Y. Q.; Lee, S. T. Adv.Funct. Mater. 2007, 17, 1501; https://doi.org/10.1002/adfm.200601179.Suche in Google Scholar

39. Hsu, Y. J.; Lu, S. Y. Small 2008, 4, 951; https://doi.org/10.1002/smll.200700787.Suche in Google Scholar PubMed

40. Raghvendra, S.; Yadav; Priya, M.; Rupali, M.; Manvendra, K.; Avinash, C.; Pandey. Ultrason. Sonochem. 2010, 17 (1), 116–122, https://doi.org/10.1016/j.ultsonch.2009.04.011.Suche in Google Scholar PubMed

41. Bandaranayake, R.; Wen, G.; Lin, J.; Jiang, H.; Sorensen, C. Appl. Phys. Lett. 1995, 67 (6), 831–834.10.1063/1.115458Suche in Google Scholar

42. Sivasubramanian, V.; Arora, A. K.; Premila, M.; Sundar, C. S.; Sastry, V. S. Physica E: Low-Dimens. Systems Nanostruct. 2006, 31 (1), 93–98; https://doi.org/10.1016/j.physe.2005.10.001.Suche in Google Scholar

43. Singh, V.; Sharma, P. K.; Chauhan, P. Mater. Charact. 2011, 62 (1), 43–52; https://doi.org/10.1016/j.matchar.2010.10.009.Suche in Google Scholar

44. Yadav, R. S.; Mishra, P.; Pandey, A. C. Ultrason. Sonochem. 2008, 15, 863; https://doi.org/10.1016/j.ultsonch.2007.11.003.Suche in Google Scholar PubMed

45. Martı´n-Rodrı´guez, R.; Gonza´lez, J.; Valiente, R.; Aguado, F.; Santamarı´a-Pe´rez, D.; Rodrı´guez, F. J. Appl. Phys. 2012, 111, 063516. https://doi.org/10.1063/1.3697562.Suche in Google Scholar

46. Natrajan, M.; Paramasivam, S.; Kim, I.; Martin Britto Dhas, S. A. Reversible Photoluminescence Shift in Imidazolium L-tartarate Crystal Triggered by Acoustic Shockwaves. Z.Phys. Chem. 2025, 239, 789–801. https://doi.org/10.1515/zpch-2024-0324.Suche in Google Scholar

47. Feng, B.; Kaifu, B.; Xin, H.; Zhongwu, W.; Fan, H. Chem. Rev. 2019, 119, 7673–7717; https://doi.org/10.1021/acs.chemrev.9b00023.Suche in Google Scholar PubMed

48. Shamal, L. C.; Inderpal, S. S.; Saroha, D. R.; Prashant, S. ACS Appl. Nano Mater. 2018, 1, 6027–6037; https://doi.org/10.1021/acsanm.8b01061.Suche in Google Scholar

49. Zhi, Su.; William, L. S.; Yu-Run, M.; Sizhu, Y.; Dana, D. D.; Kenneth, S. S. J. Am. Chem. Soc. 2017, 139, 4619–4622; https://doi.org/10.1021/jacs.6b12956.Suche in Google Scholar PubMed

50. Sivakumar, A.; Saranraj, A.; Sahaya Jude Dhas, S.; Jose, M.; Martin Britto Dhas, S. A. Opt. Eng. 2019, 58, 077104.Suche in Google Scholar

51. Dianlong, Z.; Meiyi, W.; Guanjun, X.; Zou, Bo. J. Phys. Chem. Lett. 2020, 11, 7297–7306; https://doi.org/10.1021/acs.jpclett.0c02030.Suche in Google Scholar PubMed

52. Martin, O. S.; Hiermaier, S. Int. J. Mol. Sci. 2009, 10, 5135–5216; https://doi.org/10.3390/ijms10125135.Suche in Google Scholar PubMed PubMed Central

53. Xuan, Z.; Yu-Run, M.; William, L. S.; Kenneth, S. S.; Dlott, D. D. J. Am. Chem. Soc. 2019, 141, 2220–2223; https://doi.org/10.1021/jacs.8b12905.Suche in Google Scholar PubMed

54. Sivakumar, A.; Shailaja, P.; Nandhini, M.; Sahaya Jude, D. S.; Raju, S. K.; Abdulrahman, I. A.; Natarajan, A.; Shubhadip, C.; Martin Britto Dhas, S. A. Ceram. Int. 2022, 48, 8457–8465; https://doi.org/10.1016/j.ceramint.2021.12.055.Suche in Google Scholar

55. Sivakumar, A.; Victor, C.; Muralidhr, N. M.; Martin Britto Dhas, S. A. Mater. Res. Express 2019, 6, 045031.10.1088/2053-1591/aafae6Suche in Google Scholar

56. Rita, A.; Sivakumar, A.; Martin Britto Dhas, S. A. J. Superconduc. Novel. Mag. 2020, 33, 1845–1849; https://doi.org/10.1007/s10948-020-05435-z.Suche in Google Scholar

57. Jayaram, V.; Reddy, K. P. J. Adv. Mater. Lett. 2016, 7, 100–150.10.5185/amlett.2017.6379Suche in Google Scholar

58. Vishakantaiah, J.; Asha, G.; Reddy, K. P. J. J. Adv. Ceram. 2014, 3, 297–305; https://doi.org/10.1007/s40145-014-0121-1.Suche in Google Scholar

59. Oviya, S.; Irine Maria Bincy, F.; Suresh Kumar, R.; Kannappan, P.; Kim, I.; Martin Britto Dhas, S. A. Mater. Res. Innovations 2025, 1–12; https://doi.org/10.1080/14328917.2025.2478410.Suche in Google Scholar

60. Sivakumar, A.; Lidong, D.; Sahaya, J. D. S.; Martin Britto Dhas Sathiyadhas, A.; Muthuvel, V.; Raju, S. K.; Almansour, A. I. Ceram. Int. 2024, 50, 7418–7430. https://doi.org/10.1016/j.ceramint.2023.12.028.Suche in Google Scholar

61. Irine Maria Bincy, F.; Sekar, O.; Perumal, K.; Kim, I.; Martin Britto Dhas, S. A. Acoustic Shock Wave Driven Dynamic Recrystallization Induced Reversible rod-to-cube Morphology Transition in CdS: Preserving Structural Integrity with Optical Modifications. Dalton Trans. 2025, 54, 10916–10934; https://doi.org/10.1039/d5dt00998g.Suche in Google Scholar PubMed

62. Zhou, P.; Liu, Z.; Wang, xinqiang.; Zhou, M.; Hu, C.; Zheng, Z. Wu Jinghe. J. Phys. Chem. Solids 2014, 75, 662–669.10.1016/j.jpcs.2014.01.021Suche in Google Scholar

63. Oviya, S.; Irine Maria Bincy, F.; Martin Britto Dhas, S. A.; Suresh Kumar, R.; Kannappan, P.; Kim, I. Mater. Chem. Phys. 2025, 333, 130287. https://doi.org/10.1016/j.matchemphys.2024.130287.Suche in Google Scholar

64. Sivakumar, A.; Sahaya Jude Dhas, S.; Balachandar, S.; Martin Britto Dhas, S. A. J. Electron. Mater. 2019, 48, 7868–7873.10.1007/s11664-019-07605-9Suche in Google Scholar

65. Irine, M. B. F.; Oviya, S.; Raju, S. K.; Kannappan, P.; Arumugam, S.; Kim, I.; Martin Britto Dhas, S. A. Mech. Adv. Mater. Struct. 2024, 1–15; https://doi.org/10.1080/15376494.2024.2413188.Suche in Google Scholar

66. Dhage, S. R.; Colorado, H. A.; Hahn, T. Nanoscale Res. Lett. 2011, 6, 420. https://doi.org/10.1186/1556-276X-6-420.Suche in Google Scholar PubMed PubMed Central

67. Oviya, S.; Irine, M. B.; Raju, S. K.; Kannappan, P.; Kim, I.; Dhas, M. B. Dalton Trans. 2025, 54, 3188–3206. https://doi.org/10.1039/D4DT03393K.Suche in Google Scholar PubMed

68. Aswathappa, S.; Dai, L.; Dhas, S. S. J.; Dhas, S. A. M. B.; Palaniyasan, E.; Kumar, R. S.; Almansour, A. I. Cryst. Growth Des. 2024, 24, 491–498. https://doi.org/10.1021/acs.cgd.3c01180.Suche in Google Scholar

69. Zhang, L.; Qin, D. Chalcogenide Lett. 2011, 8, 349–353.10.1134/S0021364011060130Suche in Google Scholar

70. Zhao, X. W.; Komuro, S.; Fujita, S.; Isshiki, H.; Aoyagi, Y.; Sugano, T. Mat. Sci. Eng. B. 1998, 51; https://doi.org/10.1016/s0921-5107-97-00250-x.Suche in Google Scholar

71. Manjunatha, P.; Saraswathi Amma, B.; Manzoor, K. Ganesh, S. Sol. Energy Mater. Sol. Cells 2007, 91, 1403–1407; https://doi.org/10.1016/j.solmat.2007.04.015.Suche in Google Scholar

72. Shankar Roy, J.; Pal, K.; Pal Majumder, T. Tapas Pal Majumder. Adv. Mater. Letters 2014, 5 (9), 538–542; https://doi.org/10.5185/amlett.2014.4561.Suche in Google Scholar

73. Singh, V.; Chauhan, P. J. Phys.Chem. Solids . 2009, 70, 1074–1079; https://doi.org/10.1016/j.jpcs.2009.05.024.Suche in Google Scholar

74. Pedrotti, L. S.; Reynolds, D. C. Phys. Rev . 1960, 119, 1897 https://doi.org/10.1103/physrev.119.1897.Suche in Google Scholar

75. Irimpan, L.; Ambika, D.; Kumar, V.; Nampoori, V. P. N.; Radhakrishnan, P. J. Appl. Phys. 2008, 104, 033118; https://doi.org/10.1063/1.2949400.Suche in Google Scholar

76. Tongay, S.; Suh, J.; Ataca, C.; Fan, W.; Luce, A.; Kang, J. S.; Liu, J.; Ko, C.; Raghunathanan, R.; Zhou, J.; Ogletree, F.; Li, J.; Gross man, J. C.; Wu, J. Sci. Rep. 2013, 3, 2657; https://doi.org/10.1038/srep02657.Suche in Google Scholar PubMed PubMed Central

Received: 2025-06-23
Accepted: 2025-09-25
Published Online: 2025-10-27

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 25.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2025-0101/pdf?lang=de
Button zum nach oben scrollen