Rational design of nitrogen-doped carbon quantum dots decorated g-C3N4 nanosheets: a fluorescent chemosensor for the selective detection of bismuth ions and its application in real samples
-
Abinaya Shanmugavel
, Narmatha Ganesan , Nelson Prabu Louie Pastiur , Raju Nandhakumarund Sujin P. Jose
Abstract
In this work, nitrogen-doped carbon quantum dots (N-CQDs) decorated graphitic carbon nitride (g-C3N4) nanocomposite (N-CQDs/g-C3N4) has been synthesized through hydrothermal method. The resulting nanocomposite was characterized using X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, elemental mapping, high-resolution transmission electron microscopy, elemental dispersive X-ray spectroscopy, and UV–vis analysis. Utilizing this nanocomposite, we developed a novel fluorescent probe for the selective detection of Bi3+ ions. The presence of carbon and nitrogen groups in the nanocomposite enables Bi3+ ion detection via a fluorescent ‘turn off–on’ process with a detection limit of 0.289 µM in a DMF:H2O (1:1) mixture. This nanoprobe demonstrates exceptional reusability as it can be chemically regenerated and employed for Bi3+ ion detection for up to 10 cycles without any loss in fluorescence properties. Furthermore, it reaches equilibrium within 2 min of Bi3+ ion addition and remains stable for over 10 min ensuring its reliability and stability. The efficacy of the N-CQDs/g-C3N4 chemosensor was validated in real-world applications through the analysis of water samples from Kaveri and Siruvani Rivers (Tamil Nadu, India), delivering impressive recovery rates ranging from 87.4 to 90.1 % and 76.2 to 83.9 % respectively.
Funding source: Rashtriya Uchchatar Shiksha Abhiyan (RUSA Phase 2.0)
Award Identifier / Grant number: File No. 046/RUSA/MKU/2020-2021
Acknowledgments
The authors acknowledge Rashtriya Uchchatar Shiksha Abhiyan (RUSA Phase 2.0) File No. 046/RUSA/MKU/2020-2021, Madurai Kamaraj University, Madurai for providing financial support. Narmatha expresses her thanks to Karunya Institute of Technology and Sciences, Coimbatore for the Research Associateship.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: Abinaya Shanmugavel: Conceptualization, Methodology, Data curation, Writing- Original draft, Writing-Review and Editing, Narmatha Ganesan: Data curation, Formal analysis, software, Nelson Prabu Louie Pastiur: Formal analysis, Software, Raju Nandhakumar: Writing- Review and Editing, Visualization, Formal analysis, Validation, Sujin P Jose: Formal analysis, Supervision, Resources, Validation.
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors state no conflict of interest.
-
Research funding: Rashtriya Uchchatar Shiksha Abhiyan (RUSA Phase 2.0) File No. 046/RUSA/MKU/2020-2021.
-
Data availability: Data available on request from the authors.
References
1. Sudina, L.; Kolesnikov, S.; Minnikova, T.; Ter-Misakyants, T.; Nevedomaya, H.; Kazeev, K. Assessment of the Ecotoxicity of Bismuth at the Phytotoxicity of Soils. E3S Web Conf. 2021, 265, 1–8. https://doi.org/10.1051/e3sconf/202126505007.Suche in Google Scholar
2. Ruiz-de-Cenzano, M.; Rochina-Marco, A.; Cervera, M. L.; de la Guardia, M. Evaluation of the Content of Antimony, Arsenic, Bismuth, Selenium, Tellurium and Their Inorganic Forms in Commercially Baby Foods. Biol. Trace Elem. Res. 2017, 180 (2), 355–365. https://doi.org/10.1007/s12011-017-1018-y.Suche in Google Scholar PubMed
3. Guiard, E.; Lelievre, B.; Rouyer, M.; Zerbib, F.; Diquet, B.; Mégraud, F.; Tison, F.; Bignon, E.; Lassalle, R.; Droz-Perroteau, C.; Moore, N.; Blin, P. Bismuth Concentrations in Patients Treated in Real-Life Practice with a Bismuth Subcitrate-Metronidazole-Tetracycline Preparation: The SAPHARY Study. Drug Saf. 2019, 42 (8), 993–1003. https://doi.org/10.1007/s40264-019-00821-6.Suche in Google Scholar PubMed
4. Zhang, L.; Liu, J.; Meng, F.; Guan, Y.; Wang, Y.; Zhu, S.; Liu, Y.; Xie, Q.; Yu, J.; Zhang, S. Pharmacokinetics of Bismuth Following Oral Administration of Wei Bi Mei in Healthy Chinese Volunteers. Evidence-Based Complement. Altern. Med. 2020, 2020, 1–6. https://doi.org/10.1155/2020/2679034.Suche in Google Scholar PubMed PubMed Central
5. Ramasamy, K.; Thambusamy, S. Dual Emission and PH Based Naphthalimide Derivative Fluorescent Sensor for the Detection of Bi3+. Sens. Actuators, B 2017, 247, 632–640. https://doi.org/10.1016/j.snb.2017.03.043.Suche in Google Scholar
6. Wang, R.; Li, H.; Sun, H. Bismuth: Environmental Pollution and Health Effects. Encycl. Environ. Heal. 2019, 415–423. https://doi.org/10.1016/B978-0-12-409548-9.11870-6.Suche in Google Scholar
7. Itoh, S. I.; Kaneco, S.; Ohta, K.; Mizuno, T. Determination of Bismuth in Environmental Samples with Mg-W Cell-Electrothermal Atomic Absorption Spectrometry. Anal. Chim. Acta 1999, 379 (1–2), 169–173. https://doi.org/10.1016/S0003-2670(98)00706-5.Suche in Google Scholar
8. Saravanan, A.; Shyamsivappan, S.; Suresh, T.; Subashini, G.; Kadirvelu, K.; Bhuvanesh, N.; Nandhakumar, R.; Mohan, P. S. An Efficient New Dual Fluorescent Pyrene Based Chemosensor for the Detection of Bismuth (III) and Aluminium (III) Ions and Its Applications in Bio-imaging. Talanta 2019, 198, 249–256. https://doi.org/10.1016/j.talanta.2019.01.114.Suche in Google Scholar PubMed
9. David, C. I.; Prabakaran, G.; Sundaram, K.; Ravi, S.; devi, D. P.; Abiram, A.; Nandhakumar, R. Rhodanine-Based Fluorometric Sequential Monitoring of Silver (I) and Iodide Ions: Experiment, DFT Calculation and Multifarious Applications. J. Hazard. Mater. 2021, 419, 126449. https://doi.org/10.1016/j.jhazmat.2021.126449.Suche in Google Scholar PubMed
10. Zou, J.; Deng, W.; Jiang, J.; Arramel; He, X.; Li, N.; Fang, J.; Hsu, J. P. Built-in Electric Field-Assisted Step-Scheme Heterojunction of Carbon Nitride-Copper Oxide for Highly Selective Electrochemical Detection of p-Nonylphenol. Electrochim. Acta 2020, 354, 136658. https://doi.org/10.1016/j.electacta.2020.136658.Suche in Google Scholar
11. Manigandan, S.; Muthusamy, A.; Nandhakumar, R.; Immanuel David, C. Recognition of Fe3+ by a New Azine-Based Fluorescent “Turn-off” Chemosensor and Its Binding Mode Analysis Using DFT. J. Mol. Struct. 2020, 1208, 127834. https://doi.org/10.1016/j.molstruc.2020.127834.Suche in Google Scholar
12. Wang, C.; Shi, H.; Yang, M.; Yan, Y.; Liu, E.; Ji, Z.; Fan, J. A Novel Nitrogen-Doped Carbon Quantum Dots as Effective Fluorescent Probes for Detecting Dopamine. J. Photochem. Photobiol. A Chem. 2020, 391, 112374. https://doi.org/10.1016/j.jphotochem.2020.112374.Suche in Google Scholar
13. Thomas, S. A.; Cherusseri, J. Boron Carbon Nitride (BCN): An Emerging Two-Dimensional Nanomaterial for Supercapacitors. J. Mater. Chem. A 2023, 11 (43), 23148–23187. https://doi.org/10.1039/d3ta05074b.Suche in Google Scholar
14. Richard, B.; Thomas, S. A.; Reddy, M. A.; Pallavolu, M. R.; Cherusseri, J. Minireview on Fluid Manipulation Techniques for the Synthesis and Energy Applications of Two-Dimensional MXenes: Advances, Challenges, and Perspectives. Energy Fuels 2023, 37 (10), 6999–7013. https://doi.org/10.1021/acs.energyfuels.3c00589.Suche in Google Scholar
15. Thomas, S. A.; Cherusseri, J.; Rajendran, D. N. 2D Nickel Sulfide Electrodes with Superior Electrochemical Thermal Stability Along with Long Cyclic Stability for Supercapatteries. Energy Technol. 2024, 12 (6), 1–17. https://doi.org/10.1002/ente.202301641.Suche in Google Scholar
16. Barhoum, A.; Deshmukh, K. Handbook of Functionalized Carbon Nanostructures, From synthesis methods to applications 2024, 1–2801. https://doi.org/10.1007/978-3-031-32150-4.Suche in Google Scholar
17. Anna, S.; Reddy, M.; Ehtisham, M.; Cherusseri, J. Graphitic Carbon Nitride (g-C3N4): Futuristic Material for Rechargeable Batteries. 2023, 68, https://doi.org/10.1016/j.est.2023.107673.Suche in Google Scholar
18. Dyes, V. P.; Kadam, A. N.; Lee, S. Dual Functional S-Doped g-C3N4 Pinhole Porous Nanosheets for Selective Fluorescence Sensing of Ag+ and Visible-Light Photocatalysis of Dyes. Molecules 2019, 24, 1–17. https://doi.org/10.3390/molecules24030450.Suche in Google Scholar PubMed PubMed Central
19. Duraisamy, N.; Prabhu, S.; Ramesh, R.; Kandiah, K. Binder-Free Heterostructure (g-C3N4/PPy) Based Thin Film on Semi-flexible Nickel Foam via Hybrid Spray Technique for Energy Storage Application. Prog. Nat. Sci. Mater. Int. 2020, 30 (3), 298–307. https://doi.org/10.1016/j.pnsc.2020.03.001.Suche in Google Scholar
20. Sharma, M.; Gaur, A. Designing of Carbon Nitride Supported ZnCo2O4 Hybrid Electrode for High-Performance Energy Storage Applications. Sci. Rep. 2020, 10 (1), 1–9. https://doi.org/10.1038/s41598-020-58925-4.Suche in Google Scholar PubMed PubMed Central
21. Duan, J.; Zhao, L.; Lv, W.; Li, Y.; Zhang, Y.; Ai, S.; Zhu, L. Facile Synthesis of G-C3N4/Fe3O4 Nanocompoites for Fluorescent Detection and Removal of Cr(VI). Microchem. J. 2019, 150, 104105. https://doi.org/10.1016/j.microc.2019.104105.Suche in Google Scholar
22. Vattikuti, S. V. P.; Reddy, B. P.; Byon, C.; Shim, J. Carbon/CuO Nanosphere-Anchored g-C3N4 Nanosheets as Ternary Electrode Material for Supercapacitors. J. Solid State Chem. 2018, 262, 106–111. https://doi.org/10.1016/j.jssc.2018.03.019.Suche in Google Scholar
23. Lv, S.; Li, Y.; Zhang, K.; Lin, Z.; Tang, D. Carbon Dots/g-C3N4 Nanoheterostructures-Based Signal-Generation Tags for Photoelectrochemical Immunoassay of Cancer Biomarkers Coupling with Copper Nanoclusters. ACS Appl. Mater. Interfaces 2017, 9 (44), 38336–38343. https://doi.org/10.1021/acsami.7b13272.Suche in Google Scholar PubMed
24. Cao, Y.; Wu, W.; Wang, S.; Peng, H.; Hu, X.; Yu, Y. Monolayer g-C3N4 Fluorescent Sensor for Sensitive and Selective Colorimetric Detection of Silver Ion from Aqueous Samples. J. Fluoresc. 2016, 26 (2), 739–744. https://doi.org/10.1007/s10895-016-1764-9.Suche in Google Scholar PubMed
25. Shaikh, A. F.; Tamboli, M. S.; Patil, R. H.; Bhan, A.; Ambekar, J. D.; Kale, B. B. Bioinspired Carbon Quantum Dots: An Antibiofilm Agents. J. Nanosci. Nanotechnol. 2018, 19 (4), 2339–2345. https://doi.org/10.1166/jnn.2019.16537.Suche in Google Scholar PubMed
26. Rao, L.; Zhang, Q.; Wen, M.; Mao, Z.; Wei, H.; Niu, X. Solvent Regulation Synthesis of Single-Component White Emission Carbon Quantum Dots for White Light-Emitting Diodes. Nanotechnol. Rev. 2021, 10, 465–477. https://doi.org/10.1515/ntrev-2021-0036.Suche in Google Scholar
27. Sunil, S.; Mandal, B. K. Synthesis of Fluorescent Carbon Quantum Dots Doped Graphitic Carbon Nitride and Its Application as Fe3+ Sensors. J. Clust. Sci. 2023, 34 (5), 2591–2607. https://doi.org/10.1007/s10876-023-02410-1.Suche in Google Scholar
28. Wei, Y.; Chen, L.; Wang, J.; Liu, X.; Yang, Y.; Yu, S. Investigation on the Chirality Mechanism of Chiral Carbon Quantum Dots Derived from Tryptophan. RSC Adv. 2019, 9, 3208–3214. https://doi.org/10.1039/c8ra09649j.Suche in Google Scholar PubMed PubMed Central
29. Song, Y.; Cao, L.; Li, J.; Cong, S.; Li, D.; Bao, Z.; Tan, M. Interactions of Carbon Quantum Dots from Roasted Fish with Digestive Protease and Dopamine. Food Funct. 2019, 10 (6), 3706–3716. https://doi.org/10.1039/c9fo00655a.Suche in Google Scholar PubMed
30. Rajamanikandan, S.; Biruntha, M.; Ramalingam, G. Blue Emissive Carbon Quantum Dots (CQDs) from Bio-Waste Peels and Its Antioxidant Activity. J. Clust. Sci. 2022, 33 (3), 1045–1053. https://doi.org/10.1007/s10876-021-02029-0.Suche in Google Scholar
31. Li, M.; Wang, B.; An, X.; Li, Z.; Zhu, H.; Mao, B.; Calatayud, D. G.; James, T. D.; Key, H.; Plant, P.; Gas, F.; Science, E.; Power, E. A Practical Graphitic Carbon Nitride (g-C3N4) Based Fluorescence Sensor for the Competitive Detection of Trithiocyanuric Acid and Mercury Ions. Dye. Pigment. 2019, 170, 107476. https://doi.org/10.1016/j.dyepig.2019.04.021.Suche in Google Scholar
32. Raja, V.; Jaffar Ali, B. M. Synergy of Photon Up-Conversion and Z-Scheme Mechanism in Graphitic Carbon Nitride Nanoparticles Decorated g-C3N4–TiO2. Colloids Surf. A Physicochem. Eng. Asp. 2021, 611, 125862. https://doi.org/10.1016/j.colsurfa.2020.125862.Suche in Google Scholar
33. Narzary, S.; Alamelu, K.; Raja, V.; Jaffar Ali, B. M. Visible Light Active, Magnetically Retrievable Fe3O4@SiO2@g-C3N4/TiO2 Nanocomposite as Efficient Photocatalyst for Removal of Dye Pollutants. J. Environ. Chem. Eng. 2020, 8 (5), 104373. https://doi.org/10.1016/j.jece.2020.104373.Suche in Google Scholar
34. Chanawungmuang, N.; Sukwattanasinitt, M.; Rashatasakhon, P. Fluorescence Sensors for Bismuth (III) Ion from Pyreno[4,5-d]Imidazole Derivatives. Photochem. Photobiol. 2021, 97 (2), 301–308. https://doi.org/10.1111/php.13331.Suche in Google Scholar PubMed
35. Shi, J.; Yang, X.; Pan, H.; Feng, W. Photoluminescent Terbium-Metal-Organic Framework and Its Trace Bismuth-Ion Sensing Performance. J. Solid State Chem. 2022, 316, 123652. https://doi.org/10.1016/j.jssc.2022.123652.Suche in Google Scholar
36. Taher, M. A.; Rahimi, M.; Fazelirad, H. A Sensitive Fluorescence Quenching Method for Determination of Bismuth with Tiron. J. Lumin. 2014, 145, 976–980. https://doi.org/10.1016/j.jlumin.2013.09.025.Suche in Google Scholar
37. Obregón, S.; Vázquez, A. SBA-15 Assisted Preparation of Mesoporous g-C3N4 for Photocatalytic H2 Production and Au3+ Fluoroscence Sensing. Appl. Surf. Sci. 2019, 488, 205–212. https://doi.org/10.1016/j.apsusc.2019.05.231.Suche in Google Scholar
38. Lai, C.; Lin, S.; Xiong, L.; Wu, Y.; Liu, C.; Jin, Y. High Quantum Yield Nitrogen-Doped Carbon Quantum Dots: Green Synthesis and Application as “On-Off” Fluorescent Sensors for Specific Fe3+ Ions Detection and Cell Imaging. Diam. Relat. Mater. 2023, 133, 109702. https://doi.org/10.1016/j.diamond.2023.109702.Suche in Google Scholar
39. Goswami, J.; Saikia, L.; Hazarika, P. Carbon Dots-Decorated g-C3N4 as Peroxidase Nanozyme for Colorimetric Detection of Cr(VI) in Aqueous Medium. ChemistrySelect 2022, 7 (31), 1–10. https://doi.org/10.1002/slct.202201963.Suche in Google Scholar
40. Kaur, M.; Singh, S.; Mehta, S. K.; Kansal, S. K.; Umar, A.; Ibrahim, A. A.; Baskoutas, S. CeO2 Quantum Dots Decorated g-C3N4 Nanosheets: A Potential Scaffold for Fluorescence Sensing of Heavy Metals and Visible-Light Driven Photocatalyst. J. Alloys Compd. 2023, 960, 170637. https://doi.org/10.1016/j.jallcom.2023.170637.Suche in Google Scholar
41. Holler, J. M.; Vorce, S. P. Method Validation. Princ. Forensic Toxicol. Fifth Ed. 2020, 231–241. https://doi.org/10.1007/978-3-030-42917-1_16.Suche in Google Scholar
42. Wang, Y.; Chen, Z.; Lu, Y.; Yang, L.; Xu, T.; Wu, H.; Zhang, J.; He, L. A Review of Application, Modification, and Prospect of Melamine Foam. Nanotechnol. Rev. 2023, 12 (1). https://doi.org/10.1515/ntrev-2023-0137.Suche in Google Scholar
43. Wu, Y.; Holze, R. Self-Discharge in Supercapacitors: Causes, Effects and Therapies: An Overview. Electrochem. Energy Technol. 2021, 7 (1), 1–37.Suche in Google Scholar
44. Suguna, S.; David, C. I.; Prabhu, J.; Nandhakumar, R. Functionalized Graphene Oxide Materials for the Fluorometric Sensing of Various Analytes: A Mini Review. Mater. Adv. 2021, 2 (19), 6197–6212. https://doi.org/10.1039/d1ma00467k.Suche in Google Scholar
© 2025 Walter de Gruyter GmbH, Berlin/Boston