Abstract
In recent developments in solar energy research, Sb2Se3 and Sb2S3 emerge as environment friendly photovoltaic absorber materials, distinguished by their narrow bandgap and high absorption coefficient. Theoretical investigations to determine the electronic structure, effective density of states, dielectric function, and absorption coefficient of Sb2Se3 and Sb2S3 crystals have been performed using first-principle methods. The results reveal band gap values of about 0.822 and 1.757 eV (PBE method), 1.114 and 1.778 eV (HSE06 method) for Sb2Se3 and Sb2S3, respectively. The valence band and conduction band edges are primarily formed by Se 4p, S 3p, and Sb 5p hybridized orbitals. The effective density of states (DOS) exhibit magnitudes on the order of 1019 cm−3. Notably, anisotropic characteristics are observed in the real and imaginary parts of the dielectric function. Furthermore, the absorption coefficient surpasses 105 cm−1 at 1 and 1.2 eV for both Sb2Se3 and Sb2S3. The result indicates that these highly efficient absorber materials are suitable in collecting solar energy.
Acknowledgments:
VKK has received support from INTPART project 309827 funded by the Research Council of Norway. The computations have been performed by using the Norwegian Notur supercomputing facilities through the project nn4608k. All the authors thank Grace Roselin A for her contribution towards modelling. JM thank FIST, MKU RUSA for providing necessary support through project no:002/RUSA/MKU/2020-2021.
-
Research ethics: Not applicable.
-
Author contributions: Conceptualization, methodology, validation, formal analysis, investigation, resources, data curation, writing – original draft preparation – VKK. Visualization, writing – review and editing, supervision – JM, SPJ,VV, KB, and SZK.
-
Competing interests: The authors state no conflict of interest.
-
Research funding: VKK has received support from INTPART project 309827 funded by the Research Council of Norway. The computations have been performed by using the Norwegian Notur supercomputing facilities through the project nn4608k.
-
Data availability: The raw data can be obtained on request from the corresponding author.
References
1. Alharbi, F. H.; Kais, S. Theoretical Limits of Photovoltaics Efficiency and Possible Improvements by Intuitive Approaches Learned from Photosynthesis and Quantum Coherence. Renew. Sustain. Energy Rev. 2015, 43, 1073–1089. https://doi.org/10.1016/j.rser.2014.11.101.Search in Google Scholar
2. Cao, Y.; Zhu, X.; Jiang, J.; Liu, C.; Zhou, J.; Ni, J.; Zhang, J.; Pang, J. Rotational Design of Charge Carrier Transport Layers for Optimal Antimony Trisulfide Solar Cells and Its Integration in Tandem Devices. Sol. Energy Mater. Sol. Cells 2020, 206; https://doi.org/10.1016/j.solmat.2019.110279.Search in Google Scholar
3. Shrivastav, N.; Yadav, V.; Bhattarai, S.; Madan, J.; Hossain, M. K.; Samajdar, D. P.; Dwivedi, D. K.; Pandey, R. Two-Terminal Tandem Solar Cell with Sb2S3/Sb2Se3 Absorber Pair: Achieving 14% Power Conversion Efficiency. Phys. Scr. 2023, 98 (11), 115110; https://doi.org/10.1088/1402-4896/ad000e.Search in Google Scholar
4. Dahmardeh, Z.; Saadat, M. Exploring the Potential of Standalone and Tandem Solar Cells with Sb2S3 and Sb2Se3 Absorbers: A Simulation Study. Sci. Rep. 2023, 13 (1); https://doi.org/10.1038/s41598-023-49269-w.Search in Google Scholar
5. Basak, A.; Singh, U. P. Numerical Modelling and Analysis of Earth Abundant Sb2S3 and Sb2Se3 Based Solar Cells Using SCAPS-1D. Sol. Energy Mater. Sol. Cells 2021, 230; https://doi.org/10.1016/j.solmat.2021.111184.Search in Google Scholar
6. Koc, H.; Mamedov, A. M.; Deligoz, E.; Ozisik, H. First Principles Prediction of the Elastic, Electronic, and Optical Properties of Sb2S3 and Sb2Se3 Compounds. Solid State Sci. 2012, 14 (8), 1211–1220; https://doi.org/10.1016/j.solidstatesciences.2012.06.003.Search in Google Scholar
7. Caracas, R.; Gonze, X. First-Principles Study of the Electronic Properties of A2 B3 Minerals, with A = Bi, Sb and B = S, Se. Phys. Chem. Miner. 2005, 32 (4), 295–300; https://doi.org/10.1007/s00269-005-0470-y.Search in Google Scholar
8. Ben Nasr, T.; Maghraoui-Meherzi, H.; Ben Abdallah, H.; Bennaceur, R. Electronic Structure and Optical Properties of Sb2S3 Crystal. Phys. B Condens. Matter 2011, 406 (2), 287–292; https://doi.org/10.1016/j.physb.2010.10.070.Search in Google Scholar
9. Maghraoui-Meherzi, H.; Ben Nasr, T.; Dachraoui, M. Synthesis, Structure and Optical Properties of Sb2Se3. Mater. Sci. Semicond. Process. 2013, 16 (1), 179–184; https://doi.org/10.1016/j.mssp.2012.04.019.Search in Google Scholar
10. Kresse, G.; Hafner, J. Ab Initio Molecular Dynamics for Liquid Metals. Phys. Rev. B Condens Matter 1993, 47 (1), 558–561; https://doi.org/10.1103/physrevb.47.558.Search in Google Scholar
11. Kresse, G.; Furthmü, J. Efficient Iterative Schemes for Ab Initio Total-Energy Calculations Using a Plane-Wave Basis Set. Phys. Rev. B Condens Matter 1996, 54 (16), 11169–11186; https://doi.org/10.1103/physrevb.54.11169.Search in Google Scholar
12. Blochl, P. E. Projector Augmented-+rave Method. Phys. Rev. B Condens Matter 1994, 50 (24), 17953–17979. https://doi.org/10.1103/physrevb.50.17953.Search in Google Scholar
13. Kresse, G.; Joubert, D. From Ultrasoft Pseudopotentials to the Projector Augmented-Wave Method. Phys. Rev. B 1999, 59 (3), 1758–1775; https://doi.org/10.1103/PhysRevB.59.1758.Search in Google Scholar
14. Monkhorst, H. J.; Pack, J. D. Special Points for Brillonin-Zone Integrations. Phys. Rev. B 1976, 13, 5188–5192; https://doi.org/10.1103/PHYSREVB.13.5188.Search in Google Scholar
15. Steinmann, S. N.; Corminboeuf, C. Comprehensive Benchmarking of a Density-Dependent Dispersion Correction. J. Chem. Theory Comput. 2011, 7 (11), 3567–3577; https://doi.org/10.1021/ct200602x.Search in Google Scholar
16. Krukau, A. V.; Vydrov, O. A.; Izmaylov, A. F.; Scuseria, G. E. Influence of the Exchange Screening Parameter on the Performance of Screened Hybrid Functionals. J. Chem. Phys. 2006, 125 (22), 224106; https://doi.org/10.1063/1.2404663.Search in Google Scholar
17. Karazhanov, S. Z.; Ulyashin, A. G.; Vajeeston, P.; Ravindran, P. Hydrides as Materials for Semiconductor Electronics. Philos. Mag. 2008, 88 (16), 2461–2476; https://doi.org/10.1080/14786430802360362.Search in Google Scholar
18. Madelung, O. Binary compounds. In Data in Science and Technology, Semiconductors; Madelung, O., Ed.; Springer: Berlin, Heidelberg, 1992; pp 8–52.Search in Google Scholar
19. Voutsas, G. P.; Papazoglou, A. G.; Rentzeperis, P. J.; Siapkas, D. The Crystal Structure of Antimony Selenide, Sb2Se3. Z. Kristallogr. 1985, 171, 261–268; https://doi.org/10.1524/zkri.1985.171.14.261.Search in Google Scholar
20. Vadapoo, R.; Krishnan, S.; Yilmaz, H.; Marin, C. Electronic Structure of Antimony Selenide (Sb2Se3) from GW Calculations. Phys. Status Solidi B Basic Res. 2011, 248 (3), 700–705; https://doi.org/10.1002/pssb.201046225.Search in Google Scholar
21. Bayliss, P.; Nowacki, W. Refinement of the Crystal Structure of Stibnite, Sb2S31. Z. Kristallogr. 1972, 135, 308–315; https://doi.org/10.1524/zkri.1972.135.16.308.Search in Google Scholar
22. Radzwan, A.; Ahmed, R.; Shaari, A.; Lawal, A.; Ng, Y. X. First-Principles Calculations of Antimony Sulphide Sb2S3. Mal. J. Fund. Appl. Sci. 2017, 13, https://doi.org/10.11113/MJFAS.V13N3.598.Search in Google Scholar
23. Ngoupo, A. T.; Ouédraogo, S.; Zougmoré, F.; Ndjaka, J. M. B. Numerical Analysis of Ultrathin Sb2Se3-Based Solar Cells by SCAPS-1D Numerical Simulator Device. Chin. J. Phys. 2021, 70, 1–13; https://doi.org/10.1016/j.cjph.2020.12.010.Search in Google Scholar
24. Baig, F.; Khattak, Y. H.; Shuja, A.; Riaz, K.; Soucase, B. M. Performance Investigation of Sb2Se3 Based Solar Cell by Device Optimization, Band Offset Engineering and Hole Transport Layer in SCAPS-1D. Curr. Appl. Phys. 2020, 20 (8), 973–981; https://doi.org/10.1016/j.cap.2020.06.005.Search in Google Scholar
25. Li, Z. Q.; Ni, M.; Feng, X. D. Simulation of the Sb2Se3 Solar Cell with a Hole Transport Layer. Mater. Res. Express 2019, 7 (1); https://doi.org/10.1088/2053-1591/ab5fa7.Search in Google Scholar
26. Julius, M. Device Simulation of Sb2S3 Solar Cells by SCAPS-1D Software, 2019. http://journals.uonbi.ac.ke/index.php/ajps/index.Search in Google Scholar
27. Xiao, Y.; Wang, H.; Kuang, H. Numerical Simulation and Performance Optimization of Sb2S3 Solar Cell with a Hole Transport Layer. Opt. Mater. (Amst) 2020, 108; https://doi.org/10.1016/j.optmat.2020.110414.Search in Google Scholar
28. Li, G.; Guo, F.; Zhou, X.; Xue, L.; Huang, X.; Xiao, Y. Design and Simulation of Sb2S3 Solar Cells Based on Monolayer Graphene as Electron Transport Layer. Opt. Mater. (Amst) 2021, 112; https://doi.org/10.1016/j.optmat.2020.110791.Search in Google Scholar
29. Fox, M.; Bertsch, G. F. Optical Properties of Solids. Am. J. Phys 2002, 70, 1269–1270; https://doi.org/10.1119/1.1691372.Search in Google Scholar
30. Yang, X.; Singh, D.; Xu, Z.; Wang, Z.; Ahuja, R. An Emerging Janus MoSeTe Material for Potential Applications in Optoelectronic Devices. J. Mater. Chem. C Mater. 2019, 7 (39), 12312–12320; https://doi.org/10.1039/c9tc03936h.Search in Google Scholar
31. Lahourpour, F.; Boochani, A.; Parhizgar, S. S.; Elahi, S. M. Structural, Electronic and Optical Properties of Graphene-Like Nano-Layers MoX2(X:S,Se,Te): DFT Study. J. Theor. Appl. Phys. 2019, 13 (3), 191–201; https://doi.org/10.1007/s40094-019-0333-4.Search in Google Scholar
32. Peng, X.; Liao, Y.; Xie, J.; Song, X. Theoretical Investigation of the Electronic Structure and Anisotropic Optical Properties of Quasi-1D Sb2Se3 Photovoltaic Absorber Materials. J. Comput. Electron. 2021, 20 (1), 317–323; https://doi.org/10.1007/s10825-020-01595-2.Search in Google Scholar
33. Radzwan, A.; Ahmed, R.; Shaari, A.; Lawal, A. First-Principles Study of Electronic and Optical Properties of Antimony Sulphide Thin Film. Optik (Stuttg) 2020, 202; https://doi.org/10.1016/j.ijleo.2019.163631.Search in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Evaluation of water quality and heavy metal contamination in Cauvery River: Tamil Nadu region India
- Investigating the multifunctionality of Cu2+ doped LaSrMnO3: understanding structural, optical, and magnetic responses
- Facile hydrothermal synthesis of 2D tin sulphide (SnS2) nanoflakes for supercapacitor applications
- Investigation of structural, magnetic and morphological properties of Zinc and Cobalt-doped Nickel Ferrites
- Visible light sensitive BiVO4–TiO2 nanocomposites for photocatalytic dye degradation
- Facile synthesis and characterization of zinc molybdate (ZnMoO4) nanosheets for electrochemical supercapacitor application
- Electronic and optical properties of Sb2Se3 and Sb2S3: theoretical investigations
- Reaction duration impact on morphological, optical, structural and photoelectrochemical properties of hydrothermally synthesized TiO2 nanorods
Articles in the same Issue
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Evaluation of water quality and heavy metal contamination in Cauvery River: Tamil Nadu region India
- Investigating the multifunctionality of Cu2+ doped LaSrMnO3: understanding structural, optical, and magnetic responses
- Facile hydrothermal synthesis of 2D tin sulphide (SnS2) nanoflakes for supercapacitor applications
- Investigation of structural, magnetic and morphological properties of Zinc and Cobalt-doped Nickel Ferrites
- Visible light sensitive BiVO4–TiO2 nanocomposites for photocatalytic dye degradation
- Facile synthesis and characterization of zinc molybdate (ZnMoO4) nanosheets for electrochemical supercapacitor application
- Electronic and optical properties of Sb2Se3 and Sb2S3: theoretical investigations
- Reaction duration impact on morphological, optical, structural and photoelectrochemical properties of hydrothermally synthesized TiO2 nanorods