Home Physical Sciences ZIF-67 derived N doped carbon embedded CoxP for superior hydrogen evolution
Article
Licensed
Unlicensed Requires Authentication

ZIF-67 derived N doped carbon embedded CoxP for superior hydrogen evolution

  • Mohana Panneerselvam , Rathinam Yuvakkumar ORCID logo EMAIL logo , Ganesan Ravi EMAIL logo , Thambidurai Mariyappan , Sundaramoorthy Arunmetha , Paulpandian Muthumareeswaran and Dhayalan Velauthapillai
Published/Copyright: November 11, 2024

Abstract

Developing a sustainable non-noble hybrid electrocatalyst for effective electrocatalysis is the most crucial task; particularly in sustainable hydrogen energy production in the realm of energy conversion. In this work, effective thermal pyrolysis process followed by phosphorization strategy was employed to prepare and fabricate ZIF-67 (Zeolitic imidazole) assisted Co2P/N doped carbon electrocatalyst for hydrogen evolution reaction (HER). The optimized Co2P/N–C electrocatalyst exhibited hollow porous nanostructures as confirmed from the scanning electron microscopy. The achieved porous nanostructure improved the efficiency of the charge and mass transportation which is confirmed by the BET analysis, has high surface area value of 94.731 m2/g. In addition, a transition metal atom can regulate reactants adsorption and desorption capacity by modulating Co and P electronic configuration. The electrochemical studies of fabricated ZIF-67 derived Co2P/N–C electrode were analyzed using 1.0 M alkaline potassium hydroxide (KOH) medium in 3 electrode system process. Whilst, optimizing the pyrolysis temperature during the phosphorization will remarkably enhance the favourable characteristics of the hydrogen generation. Notably, the optimized ZIF-67 derived Co2P/NC at 350 °C electrode exhibited low overpotential (135 mV) at minimum 10 mA/cm2 and low 120.3 mV/dec Tafel slope. Besides, electrode stability at 10 mA/cm2 current density was verified by chronoamperometry test. Hence, this study furnishes the potential technique for the development of advanced hybrid MOF electrocatalyst as a successful alternative on large scale.


Corresponding authors: Rathinam Yuvakkumar, Department of Physics, Alagappa University, Karaikudi 630 003, Tamil Nadu, India, E-mail: ; and Ganesan Ravi, Department of Physics, Alagappa University, Karaikudi 630 003, Tamil Nadu, India; and Department of Physics, Chandigarh University, Mohali 140 413, Punjab, India, E-mail:

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: P. Mohana: conceptualization, writing - original draft, writing - review and editing; R. Yuvakkumar: writing - review and editing, supervision, resources; G. Ravi: investigation, writing - review and editing; M. Thambidurai: writing - review and editing, resources; S. Arun Metha: formal analysis, validation; P. Muthumareeswaran: investigation, formal analysis, validation; D. Velauthapillai: investigation, formal analysis, validation.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

  6. Research funding: This work was supported by UGC-SAP, DST-FIST, DST-PURSE and RUSA grants in India.

  7. Data availability: Data will be available on request.

References

1. Owusu, P.A.; Asumadu-Sarkodie, S. A Review of Renewable Energy Sources, Sustainability Issues and Climate Change Mitigation. Cogent Eng. 2016, 3 (1), 1167990; https://doi.org/10.1080/23311916.2016.1167990.Search in Google Scholar

2. Sivaprakash, P.; Kumar, K.A.; Muthukumaran, S.; Pandurangan, A.; Dixit, A.; Arumugam, S. NiF2 as an Efficient Electrode Material with High Window Potential of 1.8 V for High Energy and Power Density Asymmetric Supercapacitor. J. Electroanal. Chem. 2020, 873, 114379; https://doi.org/10.1016/j.jelechem.2020.114379.Search in Google Scholar

3. Amin, M.; Shah, H.H.; Fareed, A.G.; Khan, W.U.; Chung, E.; Zia, A.; Farooqi, Z.U.R.; Lee, C. Hydrogen Production Through Renewable and Non-renewable Energy Processes and Their Impact on Climate Change. Int. J. Hydrogen Energy 2022, 47 (77), 33112–33134; https://doi.org/10.1016/j.ijhydene.2022.07.172.Search in Google Scholar

4. Hejazi, S.; Altomare, M.; Schmuki, P. Photo-Electrochemical Solar-to-Fuel Energy Conversion by Hematite-Based Photo-Anodes-The Role of 1D Nanostructuring. Z. Phys. Chem. 2020, 234 (4), 615–631; https://doi.org/10.1515/zpch-2019-1479.Search in Google Scholar

5. Zeng, K.; Zhang, D. Recent Progress in Alkaline Water Electrolysis for Hydrogen Production and Applications. Prog. Energy Combust. Sci. 2010, 36 (3), 307–326; https://doi.org/10.1016/j.pecs.2009.11.002.Search in Google Scholar

6. Sliozberg, K.; Aniskevich, Y.; Kayran, U.; Masa, J.; Schuhmann, W. CoFe–OH Double Hydroxide Films Electrodeposited on Ni-Foam as Electrocatalyst for the Oxygen Evolution Reaction. Z. Phys. Chem. 2020, 234 (5), 995–1019; https://doi.org/10.1515/zpch-2019-1466.Search in Google Scholar

7. Sivaprakash, P.; Kumar, K.A.; Subalakshmi, K.; Bathula, C.; Sandhu, S.; Arumugam, S. Fabrication of High Performance Asymmetric Supercapacitors with High Energy and Power Density Based on Binary Metal Fluoride. Mater. Lett. 2020, 275, 128146; https://doi.org/10.1016/j.matlet.2020.128146.Search in Google Scholar

8. Kumar, S.; Kaliamurthy, A.K.; Kavu, K.; Paramasivam, S.; Appadurai, T.; Sonachalam, A.; Kim, I.; Lee, S. Effect of Fluoride (CoF2) Based Electrode Material for High Energy and Power Density Asymmetric Flexible Supercapacitors. J. Energy Storage 2024, 87, 111460; https://doi.org/10.1016/j.est.2024.111460.Search in Google Scholar

9. Xiao, P.; Chen, W.; Wang, X. A Review of Phosphide-Based Materials for Electrocatalytic Hydrogen Evolution. Adv. Energy Mater. 2015, 5 (24), 1500985; https://doi.org/10.1002/aenm.201500985.Search in Google Scholar

10. El-Refaei, S.M.; Russo, P.A.; Pinna, N. Recent Advances in Multimetal and Doped Transition-Metal Phosphides for the Hydrogen Evolution Reaction at Different pH Values. ACS Appl. Mater. Interfaces 2021, 13 (19), 22077–22097; https://doi.org/10.1021/acsami.1c02129.Search in Google Scholar PubMed

11. Lin, C.; Gao, Z.; Yang, J.; Liu, B.; Jin, J. Porous Superstructures Constructed from Ultrafine FeP Nanoparticles for Highly Active and Exceptionally Stable Hydrogen Evolution Reaction. J. Mater. Chem. A 2018, 6 (15), 6387–6392; https://doi.org/10.1039/c8ta00260f.Search in Google Scholar

12. Jin, X.; Li, J.; Cui, Y.; Liu, X.; Wang, K.; Zhou, Y.; Yang, W.; Zhang, X.; Zhang, C.; Jiang, X.; Liu, B. In-situ Synthesis of Porous Ni2P Nanosheets for Efficient and Stable Hydrogen Evolution Reaction. Int. J. Hydrogen Energy 2019, 44 (12), 5739–5747; https://doi.org/10.1016/j.ijhydene.2019.01.042.Search in Google Scholar

13. Cui, W.; Liu, Q.; Xing, Z.; Asiri, A.M.; Alamry, K.A.; Sun, X. MoP Nanosheets Supported on Biomass-Derived Carbon Flake: One-step Facile Preparation and Application as a Novel High-Active Electrocatalyst Toward Hydrogen Evolution Reaction. Appl. Catal., B 2015, 164, 144–150; https://doi.org/10.1016/j.apcatb.2014.09.016.Search in Google Scholar

14. Ma, Y.; Yu, G.; Wang, T.; Zhang, C.; Huang, X.; Chen, W. Highly Efficient Catalytic Activity for the Hydrogen Evolution Reaction on Pristine and Monovacancy Defected WP Systems: A First-Principles Investigation. Phys. Chem. Chem. Phys. 2018, 20 (20), 13757–13764; https://doi.org/10.1039/c8cp02038h.Search in Google Scholar PubMed

15. Wang, H.; Min, S.; Wang, Q.; Li, D.; Casillas, G.; Ma, C.; Li, Y.; Liu, Z.; Li, L.J.; Yuan, J.; Antonietti, M.; Wu, T. Nitrogen-Doped Nanoporous Carbon Membranes with Co/CoP Janus-Type Nanocrystals as Hydrogen Evolution Electrode in Both Acidic and Alkaline Environments. ACS Nano 2017, 11 (4), 4358–4364; https://doi.org/10.1021/acsnano.7b01946.Search in Google Scholar PubMed

16. Kim, B.; Kim, T.; Lee, K.; Li, J. Recent Advances in Transition Metal Phosphide Electrocatalysts for Water Splitting Under Neutral pH Conditions. ChemElectroChem 2020, 7 (17), 3578–3589; https://doi.org/10.1002/celc.202000734.Search in Google Scholar

17. Shi, Q.; Chen, Z.; Song, Z.; Li, J.; Dong, J. Synthesis of ZIF-8 and ZIF-67 by Steam-Assisted Conversion and an Investigation of Their Tribological Behaviors. Angew. Chem., Int. Ed. 2011, 50 (3), 672–675; https://doi.org/10.1002/anie.201004937.Search in Google Scholar PubMed

18. Liu, T.; Li, P.; Yao, N.; Cheng, G.; Chen, S.; Luo, W.; Yin, Y. CoP-Doped MOF-Based Electrocatalyst for pH-Universal Hydrogen Evolution Reaction. Angew. Chem. 2019, 131 (14), 4727–4732; https://doi.org/10.1002/ange.201901409.Search in Google Scholar

19. Oyama, S.T.; Gott, T.; Zhao, H.; Lee, Y.K. Transition Metal Phosphide Hydroprocessing Catalysts: A Review. Catal. Today 2009, 143 (1–2), 94–107; https://doi.org/10.1016/j.cattod.2008.09.019.Search in Google Scholar

20. Kibsgaard, J.; Tsai, C.; Chan, K.; Benck, J.D.; Nørskov, J.K.; Abild-Pedersen, F.; Jaramillo, T.F. Designing an Improved Transition Metal Phosphide Catalyst for Hydrogen Evolution Using Experimental and Theoretical Trends. Energy Environ. Sci. 2015, 8 (10), 3022–3029; https://doi.org/10.1039/c5ee02179k.Search in Google Scholar

21. Indra, A.; Song, T.; Paik, U. Metal Organic Framework Derived Materials: Progress and Prospects for the Energy Conversion and Storage. Adv. Mater. 2018, 30 (39), 1705146; https://doi.org/10.1002/adma.201705146.Search in Google Scholar PubMed

22. Chu, Y.; Wang, D.; Shan, X.; Liu, C.; Wang, W.; Mitsuzaki, N.; Chen, Z. Activity Engineering to Transition Metal Phosphides as Bifunctional Electrocatalysts for Efficient Water-Splitting. Int. J. Hydrogen Energy 2022, 47 (92), 38983–39000; https://doi.org/10.1016/j.ijhydene.2022.09.070.Search in Google Scholar

23. He, Y.; Wang, Z.; Wang, H.; Wang, Z.; Zeng, G.; Xu, P.; Huang, D.; Chen, M.; Song, B.; Qin, H.; Zhao, Y. Metal-organic Framework-Derived Nanomaterials in Environment Related Fields: Fundamentals, Properties and Applications. Coord. Chem. Rev. 2021, 429, 213618; https://doi.org/10.1016/j.ccr.2020.213618.Search in Google Scholar

24. Liu, X.; Dong, J.; You, B.; Sun, Y. Competent Overall Water-Splitting Electrocatalysts Derived from ZIF-67 Grown on Carbon Cloth. Rsc Adv. 2016, 6 (77), 73336–73342; https://doi.org/10.1039/c6ra17030g.Search in Google Scholar

25. Xie, Y.; Chen, M.; Cai, M.; Teng, J.; Huang, H.; Fan, Y.; Barboiu, M.; Wang, D.; Su, C.Y. Hollow Cobalt Phosphide with N-Doped Carbon Skeleton as Bifunctional Electrocatalyst for Overall Water Splitting. Inorg. Chem. 2019, 58 (21), 14652–14659; https://doi.org/10.1021/acs.inorgchem.9b02333.Search in Google Scholar PubMed

26. Meng, Y.L.; Tang, J.; Chen, X.; Niu, Z.Y.; Zhao, Y.H.; Pan, Y.; Wang, X.F.; Song, X.Z.; Tan, Z. Hierarchical Particle-on-Sheet CoP Fabricated by Direct Phosphorization of Co(OH)2/ZIF-67 Hybrid for Boosting Hydrogen Evolution Electrocatalysis. Inorg. Chem. Commun. 2021, 134, 109058; https://doi.org/10.1016/j.inoche.2021.109058.Search in Google Scholar

27. Ganesan, V.; Kim, J.; Radhakrishnan, S. CoP Embedded in Hierarchical N-Doped Carbon Nanotube Frameworks as Efficient Catalysts for the Hydrogen Evolution Reaction. ChemElectroChem 2018, 5 (13), 1644–1651; https://doi.org/10.1002/celc.201800381.Search in Google Scholar

28. Zhao, H.; Gao, G.; Wang, Y.; Chen, R.; Du, Y.; Wang, M.; Li, Z.; Liu, Y.; Wang, L. Growth of Carbon Nanotubes Coated CoP as Electrocatalyst for Hydrogen Evolution Reaction under Acidic and Alkaline Solutions. J. Alloys Compd. 2022, 927, 167057; https://doi.org/10.1016/j.jallcom.2022.167057.Search in Google Scholar

29. Lai, Y.; Xia, W.; Li, J.; Pan, J.; Jiang, C.; Cai, Z.; Wu, C.; Huang, X.; Wang, T.; He, J. A Confinement Strategy for Stabilizing Two-Dimensional Carbon/CoP Hybrids with Enhanced Hydrogen Evolution. Electrochim. Acta 2021, 375, 137966; https://doi.org/10.1016/j.electacta.2021.137966.Search in Google Scholar

30. Ahmad, K.; Naseem, K.; Shah, H.U.R.; Riaz, N.N.; Alhadhrami, A.; Majeed, H.; Ahmad, M.M.; Afzal Awan, M.M.; Ahmad, S.; Ashfaq, M.; Taj, M.B.; Abd Elsalam, H. E. Towards Sustainable Water Purification: MOFs as a Promising Solution to Eliminate Toxic Water Pollutant Resorcinol. Z. Phys. Chem. 2023, 237 (10), 1669–1689; https://doi.org/10.1515/zpch-2023-0264.Search in Google Scholar

31. Qian, J.; Sun, F.; Qin, L. Hydrothermal Synthesis of Zeolitic Imidazolate Framework-67 (ZIF-67) Nanocrystals. Mater. Lett. 2012, 82, 220–223; https://doi.org/10.1016/j.matlet.2012.05.077.Search in Google Scholar

32. Duan, C.; Yu, Y.; Hu, H. Recent Progress on Synthesis of ZIF-67-Based Materials and Their Application to Heterogeneous Catalysis. Green Energy Environ. 2022, 7 (1), 3–15; https://doi.org/10.1016/j.gee.2020.12.023.Search in Google Scholar

33. Jiang, D.; Ma, W.; Zhou, Y.; Xing, Y.; Quan, B.; Li, D. Coupling Co2P and CoP Nanoparticles with Copper Ions Incorporated Co9S8 Nanowire Arrays for Synergistically Boosting Hydrogen Evolution Reaction Electrocatalysis. J. Colloid Interface Sci. 2019, 550, 10–16; https://doi.org/10.1016/j.jcis.2019.04.080.Search in Google Scholar PubMed

34. Song, M.; He, Y.; Zhang, M.; Zheng, X.; Wang, Y.; Zhang, J.; Han, X.; Zhong, C.; Hu, W.; Deng, Y. Controllable Synthesis of Co2P Nanorods as High-Efficiency Bifunctional Electrocatalyst for Overall Water Splitting. J. Power Sources 2018, 402, 345–352; https://doi.org/10.1016/j.jpowsour.2018.09.042.Search in Google Scholar

35. Zhou, H.; Zheng, M.; Pang, H. Synthesis of Hollow Amorphous Cobalt Phosphide-Cobalt Oxide Composite with Interconnected Pores for Oxygen Evolution Reaction. Chem. Eng. J. 2021, 416, 127884; https://doi.org/10.1016/j.cej.2020.127884.Search in Google Scholar

36. Wang, K.; Wu, C.; Wang, F.; Jiang, G. MOF-Derived CoP X Nanoparticles Embedded in Nitrogen-Doped Porous Carbon Polyhedrons for Nanomolar Sensing of P-Nitrophenol. ACS Appl. Nano Mater. 2018, 1 (10), 5843–5853; https://doi.org/10.1021/acsanm.8b01501.Search in Google Scholar

37. Chen, Z.; Zhong, H.; Hu, W.; Yin, H.; Cao, G.; Wen, H.; Wang, J.; Wang, P. Highly Dispersed Ni2− xMoxP Nanoparticles on Oxygen-Defect-Rich NiMoO4− Y Nanosheets as an Active Electrocatalyst for Alkaline Hydrogen Evolution Reaction. J. Power Sources 2019, 444, 227311; https://doi.org/10.1016/j.jpowsour.2019.227311.Search in Google Scholar

38. You, B.; Jiang, N.; Sheng, M.; Gul, S.; Yano, J.; Sun, Y. High-performance Overall Water Splitting Electrocatalysts Derived from Cobalt-Based Metal-Organic Frameworks. Chem. Mater. 2015, 27 (22), 7636–7642; https://doi.org/10.1021/acs.chemmater.5b02877.Search in Google Scholar

39. Lin, K.Y.A.; Lee, W.D. Self-assembled Magnetic Graphene Supported ZIF-67 as a Recoverable and Efficient Adsorbent for Benzotriazole. Chem. Eng. J. 2016, 284, 1017–1027; https://doi.org/10.1016/j.cej.2015.09.075.Search in Google Scholar

40. Gu, J.; Sun, L.; Zhang, Y.; Zhang, Q.; Li, X.; Si, H.; Shi, Y.; Sun, C.; Gong, Y.; Zhang, Y. MOF-Derived Ni-Doped CoP@ C Grown on CNTs for High-Performance Supercapacitors. Chem. Eng. J. 2020, 385, 123454; https://doi.org/10.1016/j.cej.2019.123454.Search in Google Scholar

41. Duan, X.; Sun, H.; Ao, Z.; Zhou, L.; Wang, G.; Wang, S. Unveiling the Active Sites of Graphene-Catalyzed Peroxymonosulfate Activation. Carbon 2016, 107, 371–378; https://doi.org/10.1016/j.carbon.2016.06.016.Search in Google Scholar

42. Jiang, C.; Wen, B. Electromagnetic Wave Absorption Performance and Mechanism of Co/C Composites Derived from Different Cobalt Source ZIF-67: A Comparative Study. J. Mater. Sci.: Mater. Electron. 2022, 33 (8), 5730–5749; https://doi.org/10.1007/s10854-022-07759-z.Search in Google Scholar

43. Wu, H.; Liu, B.; Zhang, Y.; Li, F.; Liu, J.; Zhao, L.; Zhang, P.; Gao, L. Surface-Modified MOFs for Synthesizing Hollow Fe-CoP Polyhedrons Encapsulating CoP Particles to Enhance the Performance of OER. J. Mater. Sci. 2024, 1–15; https://doi.org/10.1007/s10853-024-09541-4.Search in Google Scholar

44. Mphuthi, L.E.; Erasmus, E.; Langner, E.H. Metal Exchange of ZIF-8 and ZIF-67 Nanoparticles with Fe (II) for Enhanced Photocatalytic Performance. ACS Omega 2021, 6 (47), 31632–31645; https://doi.org/10.1021/acsomega.1c04142.Search in Google Scholar PubMed PubMed Central

45. Li, W.; Zhang, A.; Jiang, X.; Chen, C.; Liu, Z.; Song, C.; Guo, X. Low Temperature CO2 Methanation: ZIF-67-Derived Co-Based Porous Carbon Catalysts with Controlled Crystal Morphology and Size. ACS Sustain. Chem. Eng. 2017, 5 (9), 7824–7831; https://doi.org/10.1021/acssuschemeng.7b01306.Search in Google Scholar

46. Song, Y.; Peng, Y.; Yao, S.; Zhang, P.; Wang, Y.; Gu, J.; Lu, T.; Zhang, Z. Co-POM@ MOF-Derivatives with Trace Cobalt Content for Highly Efficient Oxygen Reduction. Chin. Chem. Lett. 2022, 33 (2), 1047–1050; https://doi.org/10.1016/j.cclet.2021.08.045.Search in Google Scholar

47. Zhang, X.; Huang, L.; Wang, Q.; Dong, S. Transformation of Homobimetallic MOFs into Nickel–Cobalt Phosphide/nitrogen-Doped Carbon Polyhedral Nanocages for Efficient Oxygen Evolution Electrocatalysis. J. Mater. Chem. A 2017, 5 (35), 18839–18844; https://doi.org/10.1039/c7ta06272a.Search in Google Scholar

48. Dang, T.; Wang, L.; Wei, D.; Zhang, G.; Li, Q.; Zhang, X.; Cao, Z.; Zhang, G.; Duan, H. Bifunctional Phosphorization Synthesis of Mesoporous Networked Ni-Co-P/Phosphorus Doped Carbon for Ultra-Stable Asymmetric Supercapacitors. Electrochim. Acta 2019, 299, 346–356; https://doi.org/10.1016/j.electacta.2018.12.176.Search in Google Scholar

49. Song, X.Z.; Zhao, Y.H.; Yang, W.B.; Meng, Y.L.; Chen, X.; Niu, Z.Y.; Wang, X.F.; Tan, Z. Hollow CoP Encapsulated in an N-Doped Carbon Nanocage as an Efficient Bifunctional Electrocatalyst for Overall Water Splitting. ACS Appl. Nano Mater. 2021, 4 (12), 13450–13458; https://doi.org/10.1021/acsanm.1c02941.Search in Google Scholar

50. Chen, J.; Zhang, L.; Bai, W.; Zhou, Y.; Li, C.; Guo, T.; Chen, P.; Zhu, J.; Wang, X.; Fu, Y. Unique Hollow-Concave CoMoSx Boxes with Abundant Mesoporous Structure for High-Performance Hybrid Supercapacitors. Electrochim. Acta 2020, 337, 135824; https://doi.org/10.1016/j.electacta.2020.135824.Search in Google Scholar

51. Zhu, K.; Liu, J.; Li, S.; Liu, L.; Yang, L.; Liu, S.; Wang, H.; Xie, T. Ultrafine Cobalt Phosphide Nanoparticles Embedded in Nitrogen-Doped Carbon Matrix as a Superior Anode Material for Lithium Ion Batteries. Adv. Mater. Interfaces 2017, 4 (19), 1700377; https://doi.org/10.1002/admi.201700377.Search in Google Scholar

52. Song, J.; Zhu, C.; Xu, B.Z.; Fu, S.; Engelhard, M.H.; Ye, R.; Du, D.; Beckman, S.P.; Lin, Y. Bimetallic Cobalt-based Phosphide Zeolitic Imidazolate Framework: CoPx Phase-Dependent Electrical Conductivity and Hydrogen Atom Adsorption Energy for Efficient Overall Water Splitting. Adv. Energy Mater. 2017, 7 (2), 1601555; https://doi.org/10.1002/aenm.201601555.Search in Google Scholar

53. Wang, H.; Wang, W.; Xu, Y.Y.; Asif, M.; Liu, H.; Xia, B.Y. Ball-Milling Synthesis of Co 2 P Nanoparticles Encapsulated in Nitrogen Doped Hollow Carbon Rods as Efficient Electrocatalysts. J. Mater. Chem. A 2017, 5 (33), 17563–17569; https://doi.org/10.1039/c7ta05510b.Search in Google Scholar

54. Wang, L.; Li, Q.; Chen, Z.; Wang, Y.; Li, Y.; Chai, J.; Han, N.; Tang, B.; Rui, Y.; Jiang, L. Metal Phosphide Anodes in Sodium Ion Batteries: Latest Applications and Progress. Small 2024, 2310426; https://doi.org/10.1002/smll.202310426.Search in Google Scholar PubMed

55. Li, X.; Jiang, Q.; Dou, S.; Deng, L.; Huo, J.; Wang, S. ZIF-67-derived Co-NC@ CoP-NC Nanopolyhedra as an Efficient Bifunctional Oxygen Electrocatalyst. J. Mater. Chem. A 2016, 4 (41), 15836–15840; https://doi.org/10.1039/c6ta06434e.Search in Google Scholar

56. Pan, Y.; Lin, Y.; Chen, Y.; Liu, Y.; Liu, C. Cobalt Phosphide-Based Electrocatalysts: Synthesis and Phase Catalytic Activity Comparison for Hydrogen Evolution. J. Mater. Chem. A 2016, 4 (13), 4745–4754; https://doi.org/10.1039/c6ta00575f.Search in Google Scholar

57. Jia, H.; Shang, N.; Chen, J.; Yang, Q.; Su, M.; Li, M.; Zhang, Y. Facile Synthesis of N-Doped Carbon Nanoframes Encapsulated by CoP Nanoparticles for Hydrogen Evolution Reaction. J. Colloid Interface Sci. 2021, 601, 338–345; https://doi.org/10.1016/j.jcis.2021.05.139.Search in Google Scholar PubMed

58. Anantharaj, S.; Ede, S.R.; Karthick, K.; Sankar, S.S.; Sangeetha, K.; Karthik, P.E.; Kundu, S. Precision and Correctness in the Evaluation of Electrocatalytic Water Splitting: Revisiting Activity Parameters with a Critical Assessment. Energy Environ. Sci. 2018, 11 (4), 744–771; https://doi.org/10.1039/c7ee03457a.Search in Google Scholar

59. Gao, G.; Wei, D.; Li, L.; Wei, M.; Chen, X.; Yu, Y.; Yang, G.; Zhu, G.; Han, L.; Jia, J. Accordion-like Co-MOF Derived Heterostructured Co/CoP@ PNC as Highly Efficient Electrocatalyst for Alkaline Hydrogen Evolution Reaction. Int. J. Hydrogen Energy 2024, 51, 1333–1342; https://doi.org/10.1016/j.ijhydene.2023.09.191.Search in Google Scholar

60. Vijayakumar, E.; Ramakrishnan, S.; Sathiskumar, C.; Yoo, D.J.; Balamurugan, J.; Noh, H.S.; Kwon, D.; Kim, Y.H.; Lee, H. MOF-Derived CoP-Nitrogen-Doped Carbon@ NiFeP Nanoflakes as an Efficient and Durable Electrocatalyst with Multiple Catalytically Active Sites for OER, HER, ORR and Rechargeable Zinc-Air Batteries. Chem. Eng. J. 2022, 428, 131115; https://doi.org/10.1016/j.cej.2021.131115.Search in Google Scholar

61. Feng, T.; Wang, F.; Xu, Y.; Chang, M.; Jin, X.; Piao, J.; Lei, J. CoP/Ni2P Heteronanoparticles Integrated with Atomic Co/Ni Dual Sites for Enhanced Electrocatalytic Performance toward Hydrogen Evolution. Int. J. Hydrogen Energy 2021, 46 (12), 8431–8443; https://doi.org/10.1016/j.ijhydene.2020.12.060.Search in Google Scholar

62. Chen, J.; Huang, F.; Ke, S.; Shen, J.; Li, Y.; Zheng, F.; Li, S. A Dual-Confinement Strategy to Construct Cobalt-Based Phosphide Nanoclusters within Carbon Nanofibers for Bifunctional Water Splitting Electrocatalysts. Dalton Trans. 2022, 51 (13), 5168–5174; https://doi.org/10.1039/d1dt04359e.Search in Google Scholar PubMed

63. Bodhankar, P.M.; Sarawade, P.B.; Kumar, P.; Vinu, A.; Kulkarni, A.P.; Lokhande, C.D.; Dhawale, D.S. Nanostructured Metal Phosphide Based Catalysts for Electrochemical Water Splitting: A Review. Small 2022, 18 (21), 2107572; https://doi.org/10.1002/smll.202107572.Search in Google Scholar PubMed

64. Liu, B.; Zhong, B.; Li, F.; Liu, J.; Zhao, L.; Zhang, P.; Gao, L. Co2P/CoP Heterostructures with Significantly Enhanced Performance in Electrocatalytic Hydrogen Evolution Reaction: Synthesis and Electron Redistribution Mechanism. Nano Res. 2023, 16 (11), 12830–12839; https://doi.org/10.1007/s12274-023-6228-3.Search in Google Scholar

65. Shinagawa, T.; Garcia-Esparza, A.T.; Takanabe, K. Insight on Tafel Slopes from a Microkinetic Analysis of Aqueous Electrocatalysis for Energy Conversion. Sci. rep. 2015, 5 (1), 13801; https://doi.org/10.1038/srep13801.Search in Google Scholar PubMed PubMed Central

66. Chinnuraj, I.P.; Ganesan, M.; Palanisamy, G.; Anbarasan, P.M.; Kim, I.; Hasan, I.; Paramasivam, S. Synergistic Enhancement of Electrochemical Supercapacitor Efficiency via Co3O4/GO Composite Electrode. Z. Phys. Chem. 2024 https://doi.org/10.1515/zpch-2024-0584.Search in Google Scholar

67. Murugan, A.; Siva, V.; Shameem, A.S.; Pannerselvam, M.; Kim, I.; Al-Sehemi, A.G.; Sivaprakash, P. Boosted Electrochemical Properties of Co3O4 Nanoflakes by the Addition of a Redox-Additive Electrolyte. Z. Phys. Chem. 2024 https://doi.org/10.1515/zpch-2024-0017.Search in Google Scholar

68. Luo, X.; Zhou, Q.; Du, S.; Li, J.; Zhang, L.; Lin, K.; Li, H.; Chen, B.; Wu, T.; Chen, D.; Chang, M.; Liu, Y. One-dimensional Porous Hybrid Structure of Mo2C-CoP Encapsulated in N-Doped Carbon Derived from MOF: An Efficient Electrocatalyst for Hydrogen Evolution Reaction Over the Entire pH Range. ACS Appl. Mater. Interfaces 2018, 10 (49), 42335–42347; https://doi.org/10.1021/acsami.8b15456.Search in Google Scholar PubMed

Received: 2024-02-06
Accepted: 2024-08-25
Published Online: 2024-11-11
Published in Print: 2025-06-26

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 3.2.2026 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2024-0621/html?lang=en
Scroll to top button