Startseite Facile sol–gel synthesis process and electrochemical performance of MgNiO2 act as an electrode for supercapacitor
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Facile sol–gel synthesis process and electrochemical performance of MgNiO2 act as an electrode for supercapacitor

  • Meiyazhagan Selvakumar ORCID logo EMAIL logo , Kiruthika Thirumalaisamy , Perumal Kaliyappan , Sabah Ansar , Ashok Kumar Kaliamurthy und Arangarajan Viji
Veröffentlicht/Copyright: 27. Mai 2024

Abstract

In this work, MgNiO2 material is prepared by a facile sol–gel method as an electrode material for supercapacitor application. The prepared MgNiO2 material is characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and elemental analysis (EDS). The electronics conductivity is 1.9 × 10−4 S cm−1. The electrochemical performance of the prepared MgNiO2 material was examined in an aqueous electrolyte of 1 M KOH. The electrochemical reaction of the prepared MgNiO2 material shows the EDLC behaviour from the shapes of the CV curves. The prepared MgNiO2 nanomaterial revealed good electrochemical performance with a maximum specific capacitance of 78 F/g at a rate of current density of 0.1 A/g. The above result delivered a simple, low cost and high-performance approach for a supercapacitor application.


Corresponding author: Meiyazhagan Selvakumar, Department of Physics (S&H), Karpagam College of Engineering, Coimbatore 641 032, India, E-mail:

Funding source: King Saud University

Award Identifier / Grant number: Project number (RSP2024R169)

Acknowledgments

The authors thank the Researchers Supporting Project number (RSP2024R169), King Saud University, Riyadh, Saudi Arabia for the financial support. The author acknowledge, Prof. P. Christopher Selvin, from the Luminescence and Solid State Ionics Lab, Department of Physics, Bharathiar University, to supporting the application analysis.

  1. Research ethics: Not applicable.

  2. Author contributions: All authors have read and agreed to the published version of the manuscript.

  3. Competing interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

  4. Research funding: The authors thank the Researchers Supporting Project number (RSP2024R169), King Saud University, Riyadh, Saudi Arabia for the financial support.

  5. Data availability: All the data used in the manuscript are within the manuscript.

References

1. Elayarani, P.; Sumathi, T.; Sivakumar, G.; Pragadeswaran, S.; Suthakaran, S.; Sathiyamurthy, S.; Seshadhri, J.; Ayyar, M.; Arularasu, M. V. Hydrothermal Synthesis of Zinc Molybdates (α-ZnMoO4) Nanoparticles and its Applications of Supercapacitor and Photocatalytic Performances. Z. Phys. Chem. 2025, 238, 1019. https://doi.org/10.1515/zpch-2023-0531.Suche in Google Scholar

2. Padmanaaban, S.; Kakkad, V. Y.; Viswanathan, R.; Jose, S. P.; Chellasamy, G. Incredible Electrochemical Performance of ZnWO4/PANI as a Favorable Electrode Material for Supercapacitor. Z. Phys. Chem. 2025, 239, 119. https://doi.org/10.1515/zpch-2023-0523.Suche in Google Scholar

3. Boopathi, G.; Ragavan, R.; Jaimohan, S. M.; Sagadevan, S.; Kim, I.; Pandurangan, A.; Sivaprakash, P. Mesoporous Graphitic Carbon Electrodes Derived from Boat-Fruited Shells of Sterculia Foetida for Symmetric Supercapacitors for Energy Storage Applications. Chemosphere 2024, 348, 140650; https://doi.org/10.1016/j.chemosphere.2023.140650.Suche in Google Scholar PubMed

4. Ragavan, R.; Pandurangan, A.; Boopathi, G.; Kim, I.; Sathiskumar, M.; Sagadevan, S.; Sivaprakash, P. Development and Fabrication of Phosphorus-Doped Ordered Mesoporous Carbon for Highly Efficient Energy Storage of Supercapacitor Application. Inorg. Chem. Commun. 2024, 162 (2024), 112257; https://doi.org/10.1016/j.inoche.2024.112257.Suche in Google Scholar

5. Sankar, K. V.; Lee, S. C.; Seo, Y.; Ray, C.; Liu, S.; Kundu, A.; Jun, S. C. Binder-Free Cobalt Phosphate One-Dimensional Nano Grasses as Ultrahigh-Performance Cathode Material for Hybrid Supercapacitor Applications. J. Power Sources 2018, 373, 211–219; https://doi.org/10.1016/j.jpowsour.2017.11.013.Suche in Google Scholar

6. Tie, J.; Han, J.; Diao, G.; Liu, J.; Xie, Z.; Cheng, G.; Sun, M.; Yu, L. Controllable Synthesis of Hierarchical Nickel Cobalt Sulfide with Enhanced Electrochemical Activity. Appl. Surf. Sci. 2018, 435, 187–194; https://doi.org/10.1016/j.apsusc.2017.11.086.Suche in Google Scholar

7. Das, M. R.; Roy, A.; Mpelane, S.; Mukherjee, A.; Mitra, P.; Das, S. Influence of Dipping Cycle on SILAR Synthesized NiO Thin Film for Improved Electrochemical Performance. Electrochim. Acta 2018, 273, 105–114; https://doi.org/10.1016/j.electacta.2018.04.024.Suche in Google Scholar

8. Shen, L.; Du, L.; Tan, S.; Zang, Z.; Zhao, C.; Mai, W. Flexible Electrochromic Supercapacitor Hybrid Electrodes Based on Tungsten Oxide Films and Silver Nanowires. Chem. Commun. 2016, 52, 6296–6299; https://doi.org/10.1039/c6cc01139j.Suche in Google Scholar PubMed

9. Zhao, C.; Ren, F.; Xue, X.; Zheng, W.; Wang, X.; Chang, L. A High-Performance Asymmetric Supercapacitor Based on Co(OH)2/Graphene and Activated Carbon Electrodes. J. Electroanal. Chem. 2016, 782, 98–102; https://doi.org/10.1016/j.jelechem.2016.10.023.Suche in Google Scholar

10. Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured Materials for Advanced Energy Conversion and Storage Devices. Nat. Mater. 2005, 4, 366–377; https://doi.org/10.1038/nmat1368.Suche in Google Scholar PubMed

11. Sharma, K.; Arora, A.; Tripathi, S. K. Review of Supercapacitors: Materials and Devices. J. Energy Storage 2019, 21, 801–825; https://doi.org/10.1016/j.est.2019.01.010.Suche in Google Scholar

12. Chen, K.; Xue, D. Materials Chemistry Toward Electrochemical Energy Storage. J. Mater. Chem. A 2016, 4, 7522–7537; https://doi.org/10.1039/c6ta01527a.Suche in Google Scholar

13. Rajamanickam, R.; Ganesan, B.; Kim, I.; Hasan, I.; Arumugam, P.; Paramasivam, S. Effective Synthesis of Nitrogen Doped Carbon Nanotubes Over Transition Metal Loaded Mesoporous Catalysts for Energy Storage of Supercapacitor Applications. Z. Phys. Chem. 2024, 238, 1835. https://doi.org/10.1515/zpch-2023-0458.Suche in Google Scholar

14. Laheäär, A.; Przygocki, P.; Abbas, Q.; Béguin, F. J. Appropriate Methods for Evaluating the Efficiency and Capacitive Behavior of Different Types of Supercapacitors. Electrochem. Commun. 2015, 60, 21–25; https://doi.org/10.1016/j.elecom.2015.07.022.Suche in Google Scholar

15. Chen, G. Z. Supercapacitor and Supercapattery as Emerging Electrochemical Energy Stores. Int. Mater. Rev. 2016, 62, 173–202; https://doi.org/10.1080/09506608.2016.1240914.Suche in Google Scholar

16. Sivakumar, A.; Dhas, S. S.; Sivaprakash, P.; Raj, A. D.; Kumar, R. S.; Arumugam, S.; Prabhu, S.; Ramesh, R.; Chakraborty, S.; Dhas, S. M. Shock Wave Recovery Experiments on α-V2O5 Nano-Crystalline Materials: A Potential Material for Energy Storage Applications. J. Alloys Compd. 2022, 929, 167180; https://doi.org/10.1016/j.jallcom.2022.167180.Suche in Google Scholar

17. Zhao, X.; Sánchez, B. M.; Dobson, P. J.; Grant, P. S. The Role of Nanomaterials in Redox-Based Supercapacitors for Next Generation Energy Storage Devices. Nanoscale 2011, 3, 839–855; https://doi.org/10.1039/c0nr00594k.Suche in Google Scholar PubMed

18. Xu, K.; Li, S.; Yang, J.; Xu, H.; Hu, J. Hierarchical MnO2 Nanosheets on Electrospun NiCo2O4 Nanotubes as Electrode Materials for High Rate Capability and Excellent Cycling Stability Supercapacitors. J. Alloys Compd. 2016, 678, 120–125; https://doi.org/10.1016/j.jallcom.2016.03.255.Suche in Google Scholar

19. Duraisamy, N.; Numan, A.; Fatin, S. O.; Ramesh, K.; Ramesh, S. Facile Sonochemical Synthesis of Nanostructured NiO with Different Particle Sizes and its Electrochemical Properties for Supercapacitor Application. J. Colloid Interface Sci. 2016, 471, 136–144; https://doi.org/10.1016/j.jcis.2016.03.013.Suche in Google Scholar PubMed

20. Li, X.; Gan, W.; Zheng, F.; Li, L.; Zhu, N.; Huang, X. Preparation and Electrochemical Properties of RuO2/Polyaniline Electrodes for Supercapacitors. Syn.Metals 2012, 162, 953–957; https://doi.org/10.1016/j.synthmet.2012.04.002.Suche in Google Scholar

21. Wei, H.; Wang, J.; Yu, L.; Zhang, Y.; Hou, D.; Li, T. Facile Synthesis of NiMn2O4 Nanosheet Arrays Grown on Nickel Foam as Novel Electrode Materials for High-Performance Supercapacitors. Ceram. Int. 2016, 42, 14963–14969; https://doi.org/10.1016/j.ceramint.2016.06.140.Suche in Google Scholar

22. Singh, R. N.; Pandey, J. P.; Singh, N. K.; Lal, B.; Chartier, P.; Koenig, J. F. Sol–Gel Derived Spinel MxCo3−xO4 (M=Ni, Cu; 0 ≤ x ≤ 1) Films and Oxygen Evolution. Electrochim. Acta 2000, 45, 1911–1919; https://doi.org/10.1016/s0013-4686(99)00413-2.Suche in Google Scholar

23. Zhang, P.; Han, X.; Hu, H.; Gui, J.; Li, M.; Qiu, J. In-situ Growth of Highly Uniform and Single Crystalline Co3O4 Nanocubes on Graphene for Efficient Oxygen Evolution. Cat. Comm. 2017, 88, 81–84; https://doi.org/10.1016/j.catcom.2016.09.033.Suche in Google Scholar

24. Shanmugavani, A.; Selvan, R. K. Improved Electrochemical Performances of CuCo2O4/CuO Nanocomposites for Asymmetric Supercapacitors. Electrochim. Acta 2016, 188, 852–862; https://doi.org/10.1016/j.electacta.2015.12.077.Suche in Google Scholar

25. Liu, L. L.; Annamalai, K. P.; Tao, Y. s. A Hierarchically Porous CuCo2S4/Graphene Composite as an Electrode Material for Supercapacitors. New Carbon Mater. 2016, 31, 336–342; https://doi.org/10.1016/s1872-5805(16)60017-3.Suche in Google Scholar

26. Liu, S.; Wu, J.; Zhou, J.; Fang, G.; Liang, S. Mesoporous NiCo2O4 Nanoneedles Grown on Three-Dimensional Graphene Networks as Binder-Free Electrode for High Performance Lithium Ion Batteries and Supercapacitors. Electrochim. Acta 2015, 176, 1–9; https://doi.org/10.1016/j.electacta.2015.06.131.Suche in Google Scholar

27. Kim, T.; Ramadoss, A.; Saravanakumara, B.; Veerasubramani, G. K.; Kim, S. J. Synthesis and Characterization of NiCo2O4 Nanoplates as Efficient Electrode Materials for Electrochemical Supercapacitors. Appl. Surf. Sci. 2016, 370, 452–458; https://doi.org/10.1016/j.apsusc.2016.02.147.Suche in Google Scholar

28. Rodrigues, T. S., Fajardo, H. V., Dias, A., Mezalira, D. Z., Probst, L. F., Stumpf, H. O., Barros, W. P., de Souza, G. P. Synthesis Characterization and Catalytic Potential of MgNiO2 Nanoparticles Obtained from a Novel [MgNi(opba)]n·9nH2O Chain. Ceram. Int. 2016, 42, 13635–13641.10.1016/j.ceramint.2016.05.158Suche in Google Scholar

29. Wang, B.; Xiong, X.; Renab, H.; Huang, Z. Preparation of MgO Nanocrystals and Catalytic Mechanism on Phenol Ozonation. RSC Adv. 2017, 7, 43464–43473; https://doi.org/10.1039/c7ra07553g.Suche in Google Scholar

30. Allaedini, G.; Aminayi, P.; Tasirin, S. M. Structural Properties and Optical Characterization of Flower-like Mg Doped NiO. AIP Adv. 2015, 5 (1–8), 077161; https://doi.org/10.1063/1.4927508.Suche in Google Scholar

31. Zhu, Y.; Pu, X.; Song, W.; Wu, Z.; Zhou, Z.; He, X.; Lu, F.; Jing, M.; Tang, B.; Ji, X. High Capacity NiCo2O4 Nanorods as Electrode Materials for Supercapacitor. J. Alloys Compd. 2014, 617, 988–993; https://doi.org/10.1016/j.jallcom.2014.08.064.Suche in Google Scholar

32. Jahromi, S. P.; Pandikumar, A.; Goh, B. T.; Lim, Y. S.; Basirun, W. J.; Lim, H. N.; Huang, N. M. Influence of Particle Size on Performance of a Nickel Oxide Nanoparticle-Based Supercapacitor. RSC Adv. 2015, 5, 14010–14019; https://doi.org/10.1039/c4ra16776g.Suche in Google Scholar

33. Sun, X.; Sun, X.; Liu, X.; Liu, R.; Li, S.; Shen, M.; Li, Q. One-Dimensional Mg2+-Induced α-Fe2O3 Nanowires for High-Performance Supercapacitor. Results Mater. 2020, 5, 100052; https://doi.org/10.1016/j.rinma.2019.100052.Suche in Google Scholar

34. Velmurugan, G.; Raman, R. G.; Prakash, D.; Kim, I.; Sahadevan, J.; Sivaprakash, P. Influence of Ni and Sn Perovskite NiSn(OH)6 Nanoparticles on Energy Storage Applications. Nanomaterials 2023, 13, 1523; https://doi.org/10.3390/nano13091523.Suche in Google Scholar PubMed PubMed Central

35. Naskar, I.; Ghosal, P.; Deepa, M. Zinc-ion Hybrid Supercapacitor-Batteries with a Leaf-like ZIF-L/MgNiO2 Micro-Sphere Composite and a Zn2+/Sulfonated Poly(Ether Ether Ketone) Gel. Sustain. Energy Fuels 2023, 7, 2627–2644; https://doi.org/10.1039/d3se00117b.Suche in Google Scholar

36. Maitra, S.; Mitra, R.; Nath, T. K. Investigation of Electrochemical Performance of MgNiO2 Prepared by Sol–Gel Synthesis Route for Aqueous-Based Supercapacitor Application. Curr. Appl. Phys. 2020, 20, 628–637; https://doi.org/10.1016/j.cap.2020.02.013.Suche in Google Scholar

37. Li, Y.; Li, P.; Xin, Z.; Sun, Z.; Cao, M.; Li, L. Hydrothermal Synthesis of Hierarchical Nickel- or Cobalt Based Carbonate Hydroxides for Supercapacitor Electrodes. Int. J. Electrochem. Sci. 2017, 12, 4016–4024; https://doi.org/10.20964/2017.05.50.Suche in Google Scholar

38. Wang, L.; Gao, Z.; Chang, J.; Liu, X.; Wu, D.; Xu, F.; Guo, Y.; Jiang, K. Nitrogen-Doped Porous Carbons as Electrode Materials for High-Performance Supercapacitor and Dye-Sensitized Solar Cell. ACS Appl. Mater. Interfaces 2015, 7, 20234–20244; https://doi.org/10.1021/acsami.5b05790.Suche in Google Scholar PubMed

39. Javed, M. S.; Dai, S.; Wang, M.; Guo, D.; Chen, L.; Wang, X.; Hu, C.; Xi, Y. High Performance Solid State Flexible Supercapacitor Based on Molybdenum Sulfide Hierarchical Nanospheres. J. Power Sources 2015, 285, 63–69; https://doi.org/10.1016/j.jpowsour.2015.03.079.Suche in Google Scholar

40. Li, J. M.; Chang, K. H.; Hu, C. C. A Novel Vanadium Oxide Deposit for the Cathode of Asymmetric Lithium-Ion Supercapacitors. Electrochem. Commun. 2010, 12, 1800–1803; https://doi.org/10.1016/j.elecom.2010.10.029.Suche in Google Scholar

41. Tanaka, S.; Salunkhe, R. R.; Kaneti, Y. V.; Malgras, V.; Alshehri, S. M.; Ahamad, T.; Zakaria, M. B.; Dou, S. X.; Yamauchi, Y.; Hossain, M. S. Prussian Blue Derived Iron Oxide Nanoparticles Wrapped in Graphene Oxide Sheets for Electrochemical Supercapacitors. RSC Adv. 2017, 7, 33994–33999; https://doi.org/10.1039/c7ra03179c.Suche in Google Scholar

42. Tomiyasu, H.; Shikata, H.; Takao, K.; Asanuma, N.; Taruta, S.; Park, Y. Y. An Aqueous Electrolyte of the Widest Potential Window and its Superior Capability for Capacitors. Sci. Rep. 2017, 7, 45048; https://doi.org/10.1038/srep45048.Suche in Google Scholar PubMed PubMed Central

43. Lu, K.; Song, B.; Gao, X.; Dai, H.; Zhang, J.; Ma, H. High-energy Cobalt Hexacyanoferrate and Carbon Micro-spheres Aqueous Sodium-Ion Capacitors. J. Power Sources 2016, 303, 347–353; https://doi.org/10.1016/j.jpowsour.2015.11.031.Suche in Google Scholar

44. Sivaprakash, P.; Kumar, K. A.; Muthukumaran, S.; Pandurangan, A.; Dixit, A.; Arumugam, S. NiF2 as an Efficient Electrode Material with High Window Potential of 1.8 V for High Energy and Power Density Asymmetric Supercapacitor. J. Electroanal. Chem. 2020, 873, 114379; https://doi.org/10.1016/j.jelechem.2020.114379.Suche in Google Scholar

45. Sivaprakash, P.; Kumar, K. A.; Subalakshmi, K.; Bathula, C.; Sandhu, S.; Arumugam, S. Fabrication of High-Performance Asymmetric Supercapacitors with High Energy and Power Density Based on Binary Metal Fluoride. Mater. Lett. 2020, 275, 128146; https://doi.org/10.1016/j.matlet.2020.128146.Suche in Google Scholar

Received: 2024-02-11
Accepted: 2024-05-08
Published Online: 2024-05-27
Published in Print: 2025-04-28

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2024-0611/html
Button zum nach oben scrollen