Facile sol–gel synthesis process and electrochemical performance of MgNiO2 act as an electrode for supercapacitor
-
Meiyazhagan Selvakumar
, Kiruthika Thirumalaisamy
Abstract
In this work, MgNiO2 material is prepared by a facile sol–gel method as an electrode material for supercapacitor application. The prepared MgNiO2 material is characterized by X-ray diffraction (XRD), thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FT-IR), and elemental analysis (EDS). The electronics conductivity is 1.9 × 10−4 S cm−1. The electrochemical performance of the prepared MgNiO2 material was examined in an aqueous electrolyte of 1 M KOH. The electrochemical reaction of the prepared MgNiO2 material shows the EDLC behaviour from the shapes of the CV curves. The prepared MgNiO2 nanomaterial revealed good electrochemical performance with a maximum specific capacitance of 78 F/g at a rate of current density of 0.1 A/g. The above result delivered a simple, low cost and high-performance approach for a supercapacitor application.
Funding source: King Saud University
Award Identifier / Grant number: Project number (RSP2024R169)
Acknowledgments
The authors thank the Researchers Supporting Project number (RSP2024R169), King Saud University, Riyadh, Saudi Arabia for the financial support. The author acknowledge, Prof. P. Christopher Selvin, from the Luminescence and Solid State Ionics Lab, Department of Physics, Bharathiar University, to supporting the application analysis.
-
Research ethics: Not applicable.
-
Author contributions: All authors have read and agreed to the published version of the manuscript.
-
Competing interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
-
Research funding: The authors thank the Researchers Supporting Project number (RSP2024R169), King Saud University, Riyadh, Saudi Arabia for the financial support.
-
Data availability: All the data used in the manuscript are within the manuscript.
References
1. Elayarani, P.; Sumathi, T.; Sivakumar, G.; Pragadeswaran, S.; Suthakaran, S.; Sathiyamurthy, S.; Seshadhri, J.; Ayyar, M.; Arularasu, M. V. Hydrothermal Synthesis of Zinc Molybdates (α-ZnMoO4) Nanoparticles and its Applications of Supercapacitor and Photocatalytic Performances. Z. Phys. Chem. 2025, 238, 1019. https://doi.org/10.1515/zpch-2023-0531.Suche in Google Scholar
2. Padmanaaban, S.; Kakkad, V. Y.; Viswanathan, R.; Jose, S. P.; Chellasamy, G. Incredible Electrochemical Performance of ZnWO4/PANI as a Favorable Electrode Material for Supercapacitor. Z. Phys. Chem. 2025, 239, 119. https://doi.org/10.1515/zpch-2023-0523.Suche in Google Scholar
3. Boopathi, G.; Ragavan, R.; Jaimohan, S. M.; Sagadevan, S.; Kim, I.; Pandurangan, A.; Sivaprakash, P. Mesoporous Graphitic Carbon Electrodes Derived from Boat-Fruited Shells of Sterculia Foetida for Symmetric Supercapacitors for Energy Storage Applications. Chemosphere 2024, 348, 140650; https://doi.org/10.1016/j.chemosphere.2023.140650.Suche in Google Scholar PubMed
4. Ragavan, R.; Pandurangan, A.; Boopathi, G.; Kim, I.; Sathiskumar, M.; Sagadevan, S.; Sivaprakash, P. Development and Fabrication of Phosphorus-Doped Ordered Mesoporous Carbon for Highly Efficient Energy Storage of Supercapacitor Application. Inorg. Chem. Commun. 2024, 162 (2024), 112257; https://doi.org/10.1016/j.inoche.2024.112257.Suche in Google Scholar
5. Sankar, K. V.; Lee, S. C.; Seo, Y.; Ray, C.; Liu, S.; Kundu, A.; Jun, S. C. Binder-Free Cobalt Phosphate One-Dimensional Nano Grasses as Ultrahigh-Performance Cathode Material for Hybrid Supercapacitor Applications. J. Power Sources 2018, 373, 211–219; https://doi.org/10.1016/j.jpowsour.2017.11.013.Suche in Google Scholar
6. Tie, J.; Han, J.; Diao, G.; Liu, J.; Xie, Z.; Cheng, G.; Sun, M.; Yu, L. Controllable Synthesis of Hierarchical Nickel Cobalt Sulfide with Enhanced Electrochemical Activity. Appl. Surf. Sci. 2018, 435, 187–194; https://doi.org/10.1016/j.apsusc.2017.11.086.Suche in Google Scholar
7. Das, M. R.; Roy, A.; Mpelane, S.; Mukherjee, A.; Mitra, P.; Das, S. Influence of Dipping Cycle on SILAR Synthesized NiO Thin Film for Improved Electrochemical Performance. Electrochim. Acta 2018, 273, 105–114; https://doi.org/10.1016/j.electacta.2018.04.024.Suche in Google Scholar
8. Shen, L.; Du, L.; Tan, S.; Zang, Z.; Zhao, C.; Mai, W. Flexible Electrochromic Supercapacitor Hybrid Electrodes Based on Tungsten Oxide Films and Silver Nanowires. Chem. Commun. 2016, 52, 6296–6299; https://doi.org/10.1039/c6cc01139j.Suche in Google Scholar PubMed
9. Zhao, C.; Ren, F.; Xue, X.; Zheng, W.; Wang, X.; Chang, L. A High-Performance Asymmetric Supercapacitor Based on Co(OH)2/Graphene and Activated Carbon Electrodes. J. Electroanal. Chem. 2016, 782, 98–102; https://doi.org/10.1016/j.jelechem.2016.10.023.Suche in Google Scholar
10. Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured Materials for Advanced Energy Conversion and Storage Devices. Nat. Mater. 2005, 4, 366–377; https://doi.org/10.1038/nmat1368.Suche in Google Scholar PubMed
11. Sharma, K.; Arora, A.; Tripathi, S. K. Review of Supercapacitors: Materials and Devices. J. Energy Storage 2019, 21, 801–825; https://doi.org/10.1016/j.est.2019.01.010.Suche in Google Scholar
12. Chen, K.; Xue, D. Materials Chemistry Toward Electrochemical Energy Storage. J. Mater. Chem. A 2016, 4, 7522–7537; https://doi.org/10.1039/c6ta01527a.Suche in Google Scholar
13. Rajamanickam, R.; Ganesan, B.; Kim, I.; Hasan, I.; Arumugam, P.; Paramasivam, S. Effective Synthesis of Nitrogen Doped Carbon Nanotubes Over Transition Metal Loaded Mesoporous Catalysts for Energy Storage of Supercapacitor Applications. Z. Phys. Chem. 2024, 238, 1835. https://doi.org/10.1515/zpch-2023-0458.Suche in Google Scholar
14. Laheäär, A.; Przygocki, P.; Abbas, Q.; Béguin, F. J. Appropriate Methods for Evaluating the Efficiency and Capacitive Behavior of Different Types of Supercapacitors. Electrochem. Commun. 2015, 60, 21–25; https://doi.org/10.1016/j.elecom.2015.07.022.Suche in Google Scholar
15. Chen, G. Z. Supercapacitor and Supercapattery as Emerging Electrochemical Energy Stores. Int. Mater. Rev. 2016, 62, 173–202; https://doi.org/10.1080/09506608.2016.1240914.Suche in Google Scholar
16. Sivakumar, A.; Dhas, S. S.; Sivaprakash, P.; Raj, A. D.; Kumar, R. S.; Arumugam, S.; Prabhu, S.; Ramesh, R.; Chakraborty, S.; Dhas, S. M. Shock Wave Recovery Experiments on α-V2O5 Nano-Crystalline Materials: A Potential Material for Energy Storage Applications. J. Alloys Compd. 2022, 929, 167180; https://doi.org/10.1016/j.jallcom.2022.167180.Suche in Google Scholar
17. Zhao, X.; Sánchez, B. M.; Dobson, P. J.; Grant, P. S. The Role of Nanomaterials in Redox-Based Supercapacitors for Next Generation Energy Storage Devices. Nanoscale 2011, 3, 839–855; https://doi.org/10.1039/c0nr00594k.Suche in Google Scholar PubMed
18. Xu, K.; Li, S.; Yang, J.; Xu, H.; Hu, J. Hierarchical MnO2 Nanosheets on Electrospun NiCo2O4 Nanotubes as Electrode Materials for High Rate Capability and Excellent Cycling Stability Supercapacitors. J. Alloys Compd. 2016, 678, 120–125; https://doi.org/10.1016/j.jallcom.2016.03.255.Suche in Google Scholar
19. Duraisamy, N.; Numan, A.; Fatin, S. O.; Ramesh, K.; Ramesh, S. Facile Sonochemical Synthesis of Nanostructured NiO with Different Particle Sizes and its Electrochemical Properties for Supercapacitor Application. J. Colloid Interface Sci. 2016, 471, 136–144; https://doi.org/10.1016/j.jcis.2016.03.013.Suche in Google Scholar PubMed
20. Li, X.; Gan, W.; Zheng, F.; Li, L.; Zhu, N.; Huang, X. Preparation and Electrochemical Properties of RuO2/Polyaniline Electrodes for Supercapacitors. Syn.Metals 2012, 162, 953–957; https://doi.org/10.1016/j.synthmet.2012.04.002.Suche in Google Scholar
21. Wei, H.; Wang, J.; Yu, L.; Zhang, Y.; Hou, D.; Li, T. Facile Synthesis of NiMn2O4 Nanosheet Arrays Grown on Nickel Foam as Novel Electrode Materials for High-Performance Supercapacitors. Ceram. Int. 2016, 42, 14963–14969; https://doi.org/10.1016/j.ceramint.2016.06.140.Suche in Google Scholar
22. Singh, R. N.; Pandey, J. P.; Singh, N. K.; Lal, B.; Chartier, P.; Koenig, J. F. Sol–Gel Derived Spinel MxCo3−xO4 (M=Ni, Cu; 0 ≤ x ≤ 1) Films and Oxygen Evolution. Electrochim. Acta 2000, 45, 1911–1919; https://doi.org/10.1016/s0013-4686(99)00413-2.Suche in Google Scholar
23. Zhang, P.; Han, X.; Hu, H.; Gui, J.; Li, M.; Qiu, J. In-situ Growth of Highly Uniform and Single Crystalline Co3O4 Nanocubes on Graphene for Efficient Oxygen Evolution. Cat. Comm. 2017, 88, 81–84; https://doi.org/10.1016/j.catcom.2016.09.033.Suche in Google Scholar
24. Shanmugavani, A.; Selvan, R. K. Improved Electrochemical Performances of CuCo2O4/CuO Nanocomposites for Asymmetric Supercapacitors. Electrochim. Acta 2016, 188, 852–862; https://doi.org/10.1016/j.electacta.2015.12.077.Suche in Google Scholar
25. Liu, L. L.; Annamalai, K. P.; Tao, Y. s. A Hierarchically Porous CuCo2S4/Graphene Composite as an Electrode Material for Supercapacitors. New Carbon Mater. 2016, 31, 336–342; https://doi.org/10.1016/s1872-5805(16)60017-3.Suche in Google Scholar
26. Liu, S.; Wu, J.; Zhou, J.; Fang, G.; Liang, S. Mesoporous NiCo2O4 Nanoneedles Grown on Three-Dimensional Graphene Networks as Binder-Free Electrode for High Performance Lithium Ion Batteries and Supercapacitors. Electrochim. Acta 2015, 176, 1–9; https://doi.org/10.1016/j.electacta.2015.06.131.Suche in Google Scholar
27. Kim, T.; Ramadoss, A.; Saravanakumara, B.; Veerasubramani, G. K.; Kim, S. J. Synthesis and Characterization of NiCo2O4 Nanoplates as Efficient Electrode Materials for Electrochemical Supercapacitors. Appl. Surf. Sci. 2016, 370, 452–458; https://doi.org/10.1016/j.apsusc.2016.02.147.Suche in Google Scholar
28. Rodrigues, T. S., Fajardo, H. V., Dias, A., Mezalira, D. Z., Probst, L. F., Stumpf, H. O., Barros, W. P., de Souza, G. P. Synthesis Characterization and Catalytic Potential of MgNiO2 Nanoparticles Obtained from a Novel [MgNi(opba)]n·9nH2O Chain. Ceram. Int. 2016, 42, 13635–13641.10.1016/j.ceramint.2016.05.158Suche in Google Scholar
29. Wang, B.; Xiong, X.; Renab, H.; Huang, Z. Preparation of MgO Nanocrystals and Catalytic Mechanism on Phenol Ozonation. RSC Adv. 2017, 7, 43464–43473; https://doi.org/10.1039/c7ra07553g.Suche in Google Scholar
30. Allaedini, G.; Aminayi, P.; Tasirin, S. M. Structural Properties and Optical Characterization of Flower-like Mg Doped NiO. AIP Adv. 2015, 5 (1–8), 077161; https://doi.org/10.1063/1.4927508.Suche in Google Scholar
31. Zhu, Y.; Pu, X.; Song, W.; Wu, Z.; Zhou, Z.; He, X.; Lu, F.; Jing, M.; Tang, B.; Ji, X. High Capacity NiCo2O4 Nanorods as Electrode Materials for Supercapacitor. J. Alloys Compd. 2014, 617, 988–993; https://doi.org/10.1016/j.jallcom.2014.08.064.Suche in Google Scholar
32. Jahromi, S. P.; Pandikumar, A.; Goh, B. T.; Lim, Y. S.; Basirun, W. J.; Lim, H. N.; Huang, N. M. Influence of Particle Size on Performance of a Nickel Oxide Nanoparticle-Based Supercapacitor. RSC Adv. 2015, 5, 14010–14019; https://doi.org/10.1039/c4ra16776g.Suche in Google Scholar
33. Sun, X.; Sun, X.; Liu, X.; Liu, R.; Li, S.; Shen, M.; Li, Q. One-Dimensional Mg2+-Induced α-Fe2O3 Nanowires for High-Performance Supercapacitor. Results Mater. 2020, 5, 100052; https://doi.org/10.1016/j.rinma.2019.100052.Suche in Google Scholar
34. Velmurugan, G.; Raman, R. G.; Prakash, D.; Kim, I.; Sahadevan, J.; Sivaprakash, P. Influence of Ni and Sn Perovskite NiSn(OH)6 Nanoparticles on Energy Storage Applications. Nanomaterials 2023, 13, 1523; https://doi.org/10.3390/nano13091523.Suche in Google Scholar PubMed PubMed Central
35. Naskar, I.; Ghosal, P.; Deepa, M. Zinc-ion Hybrid Supercapacitor-Batteries with a Leaf-like ZIF-L/MgNiO2 Micro-Sphere Composite and a Zn2+/Sulfonated Poly(Ether Ether Ketone) Gel. Sustain. Energy Fuels 2023, 7, 2627–2644; https://doi.org/10.1039/d3se00117b.Suche in Google Scholar
36. Maitra, S.; Mitra, R.; Nath, T. K. Investigation of Electrochemical Performance of MgNiO2 Prepared by Sol–Gel Synthesis Route for Aqueous-Based Supercapacitor Application. Curr. Appl. Phys. 2020, 20, 628–637; https://doi.org/10.1016/j.cap.2020.02.013.Suche in Google Scholar
37. Li, Y.; Li, P.; Xin, Z.; Sun, Z.; Cao, M.; Li, L. Hydrothermal Synthesis of Hierarchical Nickel- or Cobalt Based Carbonate Hydroxides for Supercapacitor Electrodes. Int. J. Electrochem. Sci. 2017, 12, 4016–4024; https://doi.org/10.20964/2017.05.50.Suche in Google Scholar
38. Wang, L.; Gao, Z.; Chang, J.; Liu, X.; Wu, D.; Xu, F.; Guo, Y.; Jiang, K. Nitrogen-Doped Porous Carbons as Electrode Materials for High-Performance Supercapacitor and Dye-Sensitized Solar Cell. ACS Appl. Mater. Interfaces 2015, 7, 20234–20244; https://doi.org/10.1021/acsami.5b05790.Suche in Google Scholar PubMed
39. Javed, M. S.; Dai, S.; Wang, M.; Guo, D.; Chen, L.; Wang, X.; Hu, C.; Xi, Y. High Performance Solid State Flexible Supercapacitor Based on Molybdenum Sulfide Hierarchical Nanospheres. J. Power Sources 2015, 285, 63–69; https://doi.org/10.1016/j.jpowsour.2015.03.079.Suche in Google Scholar
40. Li, J. M.; Chang, K. H.; Hu, C. C. A Novel Vanadium Oxide Deposit for the Cathode of Asymmetric Lithium-Ion Supercapacitors. Electrochem. Commun. 2010, 12, 1800–1803; https://doi.org/10.1016/j.elecom.2010.10.029.Suche in Google Scholar
41. Tanaka, S.; Salunkhe, R. R.; Kaneti, Y. V.; Malgras, V.; Alshehri, S. M.; Ahamad, T.; Zakaria, M. B.; Dou, S. X.; Yamauchi, Y.; Hossain, M. S. Prussian Blue Derived Iron Oxide Nanoparticles Wrapped in Graphene Oxide Sheets for Electrochemical Supercapacitors. RSC Adv. 2017, 7, 33994–33999; https://doi.org/10.1039/c7ra03179c.Suche in Google Scholar
42. Tomiyasu, H.; Shikata, H.; Takao, K.; Asanuma, N.; Taruta, S.; Park, Y. Y. An Aqueous Electrolyte of the Widest Potential Window and its Superior Capability for Capacitors. Sci. Rep. 2017, 7, 45048; https://doi.org/10.1038/srep45048.Suche in Google Scholar PubMed PubMed Central
43. Lu, K.; Song, B.; Gao, X.; Dai, H.; Zhang, J.; Ma, H. High-energy Cobalt Hexacyanoferrate and Carbon Micro-spheres Aqueous Sodium-Ion Capacitors. J. Power Sources 2016, 303, 347–353; https://doi.org/10.1016/j.jpowsour.2015.11.031.Suche in Google Scholar
44. Sivaprakash, P.; Kumar, K. A.; Muthukumaran, S.; Pandurangan, A.; Dixit, A.; Arumugam, S. NiF2 as an Efficient Electrode Material with High Window Potential of 1.8 V for High Energy and Power Density Asymmetric Supercapacitor. J. Electroanal. Chem. 2020, 873, 114379; https://doi.org/10.1016/j.jelechem.2020.114379.Suche in Google Scholar
45. Sivaprakash, P.; Kumar, K. A.; Subalakshmi, K.; Bathula, C.; Sandhu, S.; Arumugam, S. Fabrication of High-Performance Asymmetric Supercapacitors with High Energy and Power Density Based on Binary Metal Fluoride. Mater. Lett. 2020, 275, 128146; https://doi.org/10.1016/j.matlet.2020.128146.Suche in Google Scholar
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Strategic analysis of lithium resources by addressing challenges and opportunities for sustainable electric vehicle battery development in the era of global EV domination
- Investigation on electrochemical corrosion behavior and mechanical properties of Fe-nano particles produced by high-energy ball milling technique
- Investigation of structural properties of Nd3+ doped ZnO to produce capable dye sensitized solar cells
- Exploring the impact of hybridization on green composites: pineapple leaf and sisal fiber reinforcement using poly(furfuryl alcohol) bioresin
- Degradation of reactive blue dye under UV irradation using iron based nanocomposites
- Enhancement of optical and electrical properties of tin oxide thin films through Zr + Ag doping for photocatalytic and photovoltaic applications
- Facile sol–gel synthesis process and electrochemical performance of MgNiO2 act as an electrode for supercapacitor
- An efficient ZnO and Ag/ZnO honeycomb nanosheets for catalytic green one-pot synthesis of coumarins through Knoevenagel condensation and antibacterial activity
- Development of biogenic mediated Ag/ZrO2 nanocomposite photocatalyst for degradation of toxic dyes in textile effluents
- An investigation on the photocatalytic and antibacterial response of green fluorescent carbon dots synthesized from corn flour
Artikel in diesem Heft
- Frontmatter
- Contributions to “Materials for solar water splitting”
- Strategic analysis of lithium resources by addressing challenges and opportunities for sustainable electric vehicle battery development in the era of global EV domination
- Investigation on electrochemical corrosion behavior and mechanical properties of Fe-nano particles produced by high-energy ball milling technique
- Investigation of structural properties of Nd3+ doped ZnO to produce capable dye sensitized solar cells
- Exploring the impact of hybridization on green composites: pineapple leaf and sisal fiber reinforcement using poly(furfuryl alcohol) bioresin
- Degradation of reactive blue dye under UV irradation using iron based nanocomposites
- Enhancement of optical and electrical properties of tin oxide thin films through Zr + Ag doping for photocatalytic and photovoltaic applications
- Facile sol–gel synthesis process and electrochemical performance of MgNiO2 act as an electrode for supercapacitor
- An efficient ZnO and Ag/ZnO honeycomb nanosheets for catalytic green one-pot synthesis of coumarins through Knoevenagel condensation and antibacterial activity
- Development of biogenic mediated Ag/ZrO2 nanocomposite photocatalyst for degradation of toxic dyes in textile effluents
- An investigation on the photocatalytic and antibacterial response of green fluorescent carbon dots synthesized from corn flour