Home Physical Sciences A comparative investigation on the surface and physicochemical properties of organobimetallic thiocyanate complexes of Cadmium, Zinc, Mercury and Manganese
Article
Licensed
Unlicensed Requires Authentication

A comparative investigation on the surface and physicochemical properties of organobimetallic thiocyanate complexes of Cadmium, Zinc, Mercury and Manganese

  • Sundararaj Cynthia EMAIL logo , Sankar Muthupandi , Gopal Ramalingam , Subbarayan Sathiyamurthy , Yassine Slimani , Munirah A. Almessiere , Abdulhadi Baykal , Saravana Kumar Jaganathan , Markasagayam Visagamani Arularasu , Anish Khan and Manikandan Ayyar EMAIL logo
Published/Copyright: May 15, 2024

Abstract

The single crystals of bimetallic thiocyanate ligands, namely manganese cadmium thiocyanate (MCTC), zinc cadmium thiocyanate (ZCTC), manganese mercury thiocyanate dimethylsulphoxide (MMTD), and cadmium mercury thiocyanate dimethylsulphoxide (CMTD), are cultivated through the utilization of slow solvent evaporation and gradual cooling methodologies. Through the utilization of optical microscopic techniques such as field emission scanning electron microscopy (FESEM), atomic force microscopy (AFM), and epifluorescence, a state-of-the-art methodology extensively employed in the realms of biochemical, medical, and chemical research, we delve into the examination of growth mechanisms and surface topographies. It is additionally employed in LED, fluorescent, and various other luminous sources. The FESEM analysis of MCTC elucidates the manifestation of an extended dendritic growth pattern, which arises from the oscillation of the Mn and Cd metal ligands when connected by thiocyanate (SCN) bridges. The presence of three notable mounds exhibiting cavities within the multi-component thin film coating (MCTC) has been duly ascertained through the utilization of atomic force microscopy (AFM) imagery. The analysis of the histogram unveiled that the average diameter exhibited an augmentation concomitant with the alteration in the breadth of the distribution throughout the process of growth.


Corresponding Authors: Sundararaj Cynthia, Department of Physics, Loyola College, Affiliated to the University of Madras, Chennai 600034, Tamil Nadu, India, E-mail: ; and Manikandan Ayyar, Department of Chemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India; and Centre for Material Chemistry, Karpagam Academy of Higher Education, Coimbatore 641 021, Tamil Nadu, India, E-mail:

  1. Research ethics: Not applicable.

  2. Author contributions: S. C., S. M., G. R., S. S. - Conceptualization, Methodology, Validation, Formal analysis, Writing Original Draft, Writing- Review, Visualization. S. C., S. M., G. R., - Investigation, Supervision, Project administration, Writing- Editing. Y. S., M. A. A., A. B., S. K. J. - Resources, Project administration, Writing- Editing. M. V. A., A. K., M. A. - Conceptualization, Software, Resources, Investigation, Writing- Editing.

  3. Competing interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

  4. Research funding: None declared.

  5. Data availability: Not applicable.

References

1. Ali, B., Tahir, S., Akhtar, M. N., Yameen, M., Ashraf, R., Hussain, T., Ghaffar, A., Abbas, M., Bokhari, T. H., Iqbal, M. Cytotoxicity and antimicrobial activity of pivalic and benzoic acid-complexed Cu and Mn complexes. Polish J. Environ. Stud. 2017, 26(6), 2861–2867; https://doi.org/10.15244/pjoes/68536.Search in Google Scholar

2. Janjua, U. U., Pervaiz, M., Ali, F., Saleem, A., Ashraf, A., Younas, U., Iqbal, M. Schiff Base Derived Mn(II) and Cd(II) Novel Complexes for Catalytic and Antioxidant Applications. Inorg. Chem. Commun. 2023, 157, 111233; https://doi.org/10.1016/j.inoche.2023.111233.Search in Google Scholar

3. Kamran, U., Bhatti, H. N., Iqbal, M., Jamil, S., Zahid, M. Biogenic Synthesis, Characterization and Investigation of Photocatalytic and Antimicrobial Activity of Manganese Nanoparticles Synthesized from Cinnamomum Verum Bark Extract. J. Mol. Struct. 2019, 1179, 532–539; https://doi.org/10.1016/j.molstruc.2018.11.006.Search in Google Scholar

4. Mehta, K. K., Chandra, R. S., Mehta, D. R., Maisuria, M. Thermodynamic Studies on Metal Complexes of Cd2+, Ni2+, Cu2+ and Co2+ with Pyridine-2, 6-Dicarboxylic Acid in Water, Methanol and Water-Methanol Binary Solvent Systems at 298.15, 308.15 and 318.15 K by Conductometric Method. Chem. Int. 2018, 4(1), 33–42.Search in Google Scholar

5. Abebe, A., Sendek, A., Ayalew, S., Kibret, M. Copper (II) Mixed-Ligand Complexes Containing 1, 10-phenanthroline, Adenine and Thymine: Synthesis, Characterization and Antibacterial Activities. Chem. Int. 2017, 3(3), 230–239.Search in Google Scholar

6. Kousar, N., Ali, S., Shahzadi, S., Rukh, L., Ramzan, S., Shahid, M., Sharma, S. K., Qanungo, K. Synthesis, Characterization and Antimicrobial Activities of Organotin (IV) Complexes with Ethylthioglycolate. Chem. Int. 2015, 1(2), 92–98.Search in Google Scholar

7. Rahmat, M., Rehman, A., Rahmat, S., Bhatti, H. N., Iqbal, M., Khan, W. S., Bajwa, S. Z., Rahmat, R., Nazir, A. Highly Efficient Removal of Crystal Violet Dye from Water by MnO2 Based Nanofibrous Mesh/Photocatalytic Process. J. Mater. Res. Tech. 2019, 8(6), 5149–5159; https://doi.org/10.1016/j.jmrt.2019.08.038.Search in Google Scholar

8. Umair, H. M., Bibi, I., Majid, F., Kamal, S., Alwadai, N., Arshad, M. I., Ali, A., Nouren, S., Al Huwayz, M., Iqbal, M. Ferroelectric, Dielectric, Magnetic and Photocatalytic Properties of Mn Doped Ca-Hexaferrite Prepared via Microemulsion Route. Mater. Chem. Phys. 2023, 307, 128152; https://doi.org/10.1016/j.matchemphys.2023.128152.Search in Google Scholar

9. Ghafoor, A., Bibi, I., Majid, F., Kamal, S., Jilani, K., Sultan, M., Alwadai, N., Ali, A., Ali, A., Nazir, A., Iqbal, M. Electrochemical, Ferroelectric and Dielectric Properties of Gd, Fe and Mn Doped Nickel Perovskite with Robust Photocatalytic Activity under Visible Light. Mater. Sci. Semicond. Process. 2023, 160, 107408; https://doi.org/10.1016/j.mssp.2023.107408.Search in Google Scholar

10. Rasheed, A., Bibi, I., Majid, F., Kamal, S., Taj, B., Raza, M., Khaliq, N., Katubi, K. M., Ezzine, S., Alwadai, N., Iqbal, M. Mn Doped SrFe12O19 Fabricated via Facile Microemulsion Route and Solar-Light-Driven Photocatalytic Removal of Crystal Violet Dye. Phys. B 2022, 646, 414303; https://doi.org/10.1016/j.physb.2022.414303.Search in Google Scholar

11. Zang, Z. All-Optical Switching in Sagnac Loop Mirror Containing an Ytterbium-Doped Fiber and Fiber Bragg Grating. Appl. Opt. 2013, 52, 5701–5706. https://doi.org/10.1364/AO.52.005701.Search in Google Scholar PubMed

12. Zang, Z., Zhang, Y. Analysis of Optical Switching in a Yb3+-Doped Fiber Bragg Grating by Using Self-phase Modulation and Cross-phase Modulation. Appl. Opt. 2012, 51, 3424–3430. https://doi.org/10.1364/AO.51.003424.Search in Google Scholar PubMed

13. John Sundaram, S., Ramaclus, J. V., Panneerselvam, M., Jaccob, M., Antony, P., Anandaraj, L., Muthupandi, S., Paul Winston, A. J. P., Sagayaraj, P. Crystal Growth and Characterization of 4-[4-(4-Dimethylamino-Phenyl) Buta-1,3-Dienyl]-1-Methyl Pyridinium Iodide for Higher Order Non-linear Applications. Opt. Laser Technol. 2020, 121, 105831. https://doi.org/10.1016/j.optlastec.2019.105831.Search in Google Scholar

14. Gliemann, G., Nakamoto, K. Infrared and Raman Spectra of Inorganic and Coordination Compounds; John Wiley and Sons: New York, Chichester, Brisbane, Toronto; 1978. 3. Aufl., XV, 448 Seiten mit 109 Abbildungen und 95 Tabellen. Preis: $ 31,15, Berichte Der Bunsengesellschaft Für Physikalische Chemie. 82 (1978) 1263.10.1002/bbpc.19780821138Search in Google Scholar

15. Usha, R. J., Mani, J. A. M., Sagayaraj, P., Joseph, V. Synthesis, Growth, Optical, Mechanical, Thermal and Surface Studies of Ligand Based Single Crystal of Tri-allylthiourea Cadmium Chloride (ATCC). Arch. Appl. Sci. Res. 2012, 4, 1545–1552.Search in Google Scholar

16. Wang, X. Q., Xu, D., Yuan, D. R., Tian, Y. P., Yu, W. T., Sun, S. Y., Yang, Z. H., Fang, Q., Lu, M. K., Yan, Y. X., Meng, F. Q., Guo, S. Y., Zhang, G. H., Jiang, M. H. Synthesis, Structure and Properties of a New Nonlinear Optical Material: Zinc Cadmium Tetrathiocyanate. Mater. Res. Bull. 1999, 34, 2003–2011. https://doi.org/10.1016/S0025-5408(99)00211-1.Search in Google Scholar

17. Yuan, D., Xu, D., Liu, M., Qi, F., Yu, W., Hou, W., Bing, Y., Sun, S., Jiang, M. Structure and Properties of a Complex Crystal for Laser Diode Frequency Doubling: Cadmium Mercury Thiocyanate. Appl. Phys. Lett. 1997, 70, 544–546. https://doi.org/10.1063/1.118335.Search in Google Scholar

18. Bergman, J. G., McFee, J. H., Crane, G. R. Nonlinear Optical Properties of CdHg(SCN)4 and ZnHg(SCN)4. Mater. Res. Bull. 1970, 5, 913–917. https://doi.org/10.1016/0025-5408(70)90140-6.Search in Google Scholar

19. Gunasekaran, S., Ponnusamy, S. Growth and Characterization of Cadmium Magnesium Tetra Thiocyanate Crystals. Cryst. Res. Technol. 2006, 41, 130–137. https://doi.org/10.1002/crat.200510544.Search in Google Scholar

20. Haider, S. A., Cameron, A., Siva, P., Lui, D., Shafiee, M. J., Boroomand, A., Haider, N., Wong, A. Fluorescence Microscopy Image Noise Reduction Using a Stochastically-Connected Random Field Model. Sci. Rep. 2016, 6, 20640. https://doi.org/10.1038/srep20640.Search in Google Scholar PubMed PubMed Central

21. Buschmann, C., Langsdorf, G., Lichtenthaler, H. K. Imaging of the blue, green, and red fluorescence emission of plants: an overview. Photosynthetica 2000, 38, 483–491. https://doi.org/10.1023/A:1012440903014.10.1023/A:1012440903014Search in Google Scholar

22. Muhamad Sarih, N., Myers, P., Slater, A., Slater, B., Abdullah, Z., Tajuddin, H. A., Maher, S. White light emission from a simple mixture of fluorescent organic compounds. Sci. Rep. 2019, 9, 11834. https://doi.org/10.1038/s41598-019-47847-5.Search in Google Scholar PubMed PubMed Central

23. Durgababu, G., Swati, G., Vijayan, N., Maurya, K. K., Kamalesh, T., Nagaraju, G. J., Bhagavannarayana, G. Influence of L-Phenylalanine Doping on Potassium Dihydrogen Phosphate: Crystal Growth, Structural, Optical and Mechanical Traits. J. Mater. Sci.: Mater. Electron. 2021, 32, 5698–5712. https://doi.org/10.1007/s10854-021-05291-0.Search in Google Scholar

24. Akilan, M., Ragu, R., Angelena, J. P., Das, S. J. Enhancement in Mechanical, Optical, SHG, Photoacoustic and Z-Scan Studies on Pure and Crystal Violet Dye Doped L-Proline Cadmium Chloride Single Crystal for Nonlinear Optical Applications. J. Mater. Sci.: Mater. Electron. 2019, 30, 3655–3662. https://doi.org/10.1007/s10854-018-00645-7.Search in Google Scholar

25. Khan, I., Saeed, K., Khan, I. Nanoparticles: Properties, Applications and Toxicities. Arab. J. Chem. 2019, 12, 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011.Search in Google Scholar

26. Rajesh Kumar, T., Jeyasekaran, R., Ravi Kumar, S. M., Vimalan, M., Sagayaraj, P. Surface Studies on Bimetallic Thiocyanate Ligand Based Single Crystals of MnHg(SCN)4, CdHg(SCN)4 and ZnCd(SCN)4. Appl. Surf. Sci. 2010, 257, 1684–1691. https://doi.org/10.1016/j.apsusc.2010.08.123.Search in Google Scholar

27. Hanumantharao, R., Kalainathan, S. Studies on Structural, Thermal and Optical Properties of Novel NLO Crystal Bis L-Glutamine Sodium Nitrate. Mater. Lett. 2012, 74, 74–77. https://doi.org/10.1016/j.matlet.2012.01.051.Search in Google Scholar

28. Satapathi, S., Choubey, S., Bhar, K., Chattopadhyay, S., Mitra, P., Slawin, A. M. Z., Ghosh, B. K. A Set of New Coordination Compounds of Cadmium(II)/Mercury(II) Halides/Pseudohalides Containing Polyamines: Syntheses Involving In Situ Metal–Ligand Reactions, Crystal Structures and Molecular Properties. Inorgan. Chim. Acta 2012, 384, 37–46. https://doi.org/10.1016/j.ica.2011.11.022.Search in Google Scholar

29. Scimeca, M., Bischetti, S., Lamsira, H. K., Bonfiglio, R., Bonanno, E. Energy Dispersive X-Ray (EDX) Microanalysis: A Powerful Tool in Biomedical Research and Diagnosis. Eur. J. Histochem. 2018, 62, 2841. https://doi.org/10.4081/ejh.2018.2841.Search in Google Scholar PubMed PubMed Central

30. Copéret, C., Comas-Vives, A., Conley, M. P., Estes, D. P., Fedorov, A., Mougel, V., Nagae, H., Núñez-Zarur, F., Zhizhko, P. A. Surface Organometallic and Coordination Chemistry Toward Single-Site Heterogeneous Catalysts: Strategies, Methods, Structures, and Activities. Chem. Rev. 2016, 116, 323–421. https://doi.org/10.1021/acs.chemrev.5b00373.Search in Google Scholar PubMed

31. Copéret, C., Héroguel, F. Recent Advances in Surface Organometallic Chemistry, Applied Homogeneous Catalysis with Organometallic Compounds: A Comprehensive Handbook in Four Volumes; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2017; pp. 1069–1084.10.1002/9783527651733.ch15Search in Google Scholar

32. Suematsu, N. J., Iwamoto, J., Ishii, Y., Yamamoto, A. Dendrite Pattern Formation of Sodium Chloride Crystal. Materials 2021, 14, 4434; https://doi.org/10.3390/ma14164434.Search in Google Scholar PubMed PubMed Central

33. Jiang, X. N., Sun, D. L., Xu, D., Yuan, D. R., Lu, M. K., Guo, S. Y., Fang, Q. Investigation of Growth Modes of Cadmium Mercury Thiocyanate Crystal by Atomic Force Microscopy. J. Cryst. Growth 2001, 233, 196–207. https://doi.org/10.1016/S0022-0248(01)01555-X.Search in Google Scholar

34. Liu, X. J., Wang, X. Q., Wang, Z. Y., Xu, D., Yu, G. W., Song, Y. Y., Geng, Y. L., Zhang, H. B. EX Situ Atomic Force Microscopy Studies of Surface Morphology on {001} Faces of MMTWD Crystals. Surf. Rev. Lett. 2006, 13, 607–611. https://doi.org/10.1142/S0218625X06008566.Search in Google Scholar

35. Yagi, S., Nakanishi, H., Matsubara, E., Matsubara, S., Ichitsubo, T., Hosoya, K., Matsuba, Y. Formation of Cu Nanoparticles by Electroless Deposition Using Aqueous CuO Suspension. J. Electrochem. Soc. 2008, 155, D474. https://doi.org/10.1149/1.2904884.Search in Google Scholar

36. Hegde, O., Chatterjee, R., Rasheed, A., Chakravortty, D., Basu, S. Multiscale Vapor-Mediated Dendritic Pattern Formation and Bacterial Aggregation in Complex Respiratory Biofluid Droplets. J. Colloid Interface Sci. 2022, 606, 2011–2023. https://doi.org/10.1016/j.jcis.2021.09.158.Search in Google Scholar PubMed

37. Heath, J., Taylor, N. Energy Dispersive Spectroscopy. Essent. Knowl. Briefings. 2015, 32, 856–863.Search in Google Scholar

38. Manikandan, M., Vijaya Prasath, G., Bhagavannarayan, G., Vijayan, N., Mahalingam, T., Ravi, G. Structural, Spectral and Mechanical Studies of Bimetallic Crystal: Cadmium Manganese Thiocyanate Single Crystals. Appl. Phys. A 2012, 108, 1015–1020. https://doi.org/10.1007/s00339-012-7015-2.Search in Google Scholar

39. Maldar, P. S., Mane, A. A., Nikam, S. S., Giri, S. D., Sarkar, A., Moholkar, A. V. Temperature Dependent Properties of Spray Deposited Cu2CoSnS4 (CCTS) Thin Films. J. Mater. Sci.: Mater. Electron. 2017, 28, 18891–18896. https://doi.org/10.1007/s10854-017-7842-1.Search in Google Scholar

40. Orji, N. G., Itoh, H., Wang, C., Dixson, R. G., Walecki, P. S., Schmidt, S. W., Irmer, B. Tip Characterization Method Using Multi-Feature Characterizer for CD-AFM. Ultramicroscopy 2016, 162, 25–34. https://doi.org/10.1016/j.ultramic.2015.12.003.Search in Google Scholar PubMed PubMed Central

41. Losert, W., Shi, B. Q., Cummins, H. Z. Evolution of Dendritic Patterns during Alloy Solidification: Onset of the Initial Instability. Proc. Natl. Acad. Sci. U. S. A. 1998, 95, 431–438. https://doi.org/10.1073/pnas.95.2.431.Search in Google Scholar PubMed PubMed Central

42. Jeevanandam, J., Barhoum, A., Chan, Y. S., Dufresne, A., Danquah, M. K. Review on Nanoparticles and Nanostructured Materials: History, Sources, Toxicity and Regulations. Beilstein J. Nanotechnol. 2018, 9, 1050–1074; https://doi.org/10.3762/bjnano.9.98.Search in Google Scholar PubMed PubMed Central

43. Jaber, A. Y., Alamri, S. N., Aida, M. S., Benghanem, M., Abdelaziz, A. A. Influence of Substrate Temperature on Thermally Evaporated CdS Thin Films Properties. J. Alloys Compd. 2012, 529, 63–68. https://doi.org/10.1016/j.jallcom.2012.03.093.Search in Google Scholar

Received: 2023-11-25
Accepted: 2024-01-15
Published Online: 2024-05-15
Published in Print: 2024-08-27

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0536/pdf
Scroll to top button