Unveiling the role of rare earth dopant in metal molybdate nanocomposites via facile microwave-combustion strategy and their effect on antibacterial activity
-
Abdul Samad Shameem
, Mohan Uma Priya
, Vadivel Siva , Anbazhagan Murugan , Krishnasamy Padmavathi and Abdullah G. Al-Sehemi
Abstract
Developing a robust material holding antimicrobial assets has been an efficient strategy for reducing the risk of infections related to healthcare, significantly with medical devices and touch surfaces. Molybdenum-based compounds have drawn momentous attraction because of their unique characteristics. A series of undoped and 5 % rare earth (Ce & La) doped metal (Ni, Co & Bi) molybdate nanocomposites have been prepared by facile microwave combustion method and characterized. The present study investigates the effect of dopants on crystal structure and morphology, and their impact on anti-bacterial properties is noticed. The UV–Vis. absorption spectra of all samples show a broad absorption band between 280 and 430 nm. The antibacterial properties of the prepared nanocomposites have been examined by the agar diffusion method against three Gram-positive and two Gram-negative bacteria, showing good bactericidal efficiency for all samples, except 5 % Ce–NiMoO4 (antibacterial activity exclusively against Gram-positive bacteria) and 5 % La–NiMoO4 (no antibacterial activity) nanocomposites. This work provided a novel pathway in the biomaterial field.
Acknowledgment
The Deanship of Scientific Research at King Khalid University is greatly appreciated for funding (R.G.P-1/284/44).
-
Ethical approval: Not applicable.
-
Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.
-
Competing interests: Authors state no conflict of interest.
-
Informed consent: Informed consent was obtained from all individuals included in this study.
-
Research funding: None declared.
References
1. Haque, M., Sartelli, M., McKimm, J., Abu Bakar, M. Infect. Drug Resist. 2018, 11, 2321. https://doi.org/10.2147/IDR.S177247.Search in Google Scholar PubMed PubMed Central
2. Cutter, I. S., Viets, H. R. A Short History of Midwifery; W. B. Saunders Company: Philadelphia, London, 1964; p. 99.Search in Google Scholar
3. Dancer, S. J. J. Hosp. Infect. 2004, 56, 10. https://doi.org/10.1016/j.jhin.2003.09.017.Search in Google Scholar PubMed PubMed Central
4. Guhan, V., Sanjana, S., Gowri, S., Karthikeyan, C., Faiyazuddin, M., Abdurahman Hirad, H., Alarfaj, A. A., Sharmila, S. Biomass Convers. Biorefin. 2023; https://doi.org/10.1007/s13399-023-04574-2.Search in Google Scholar
5. Mobeen Amanulla, A., Sundaram, R., Kaviyarasu, K. Surface. Interfac. 2019, 16, 132. https://doi.org/10.1016/j.surfin.2019.06.001.Search in Google Scholar
6. Rahman, G., Khan, M., Khan, Z., Shah, A. U. H. A., Khan, M. S., Shah, L. A. Z. Phys. Chem. 2019, 233, 1261. https://doi.org/10.1515/zpch-2018-1303.Search in Google Scholar
7. Ghamipoor, S., Fayyazi, S., Bahadorikhalili, S. Z. Phys. Chem. 2020, 234, 531. https://doi.org/10.1515/zpch-2018-1288.Search in Google Scholar
8. Nazir, A., Raza, M., Abbas, M., Abbas, S., Ali, A., Ali, Z., Younas, U., Al-Mijalli, S. H., Iqbal, M. Z. Phys. Chem. 2022, 236, 1203. https://doi.org/10.1515/zpch-2022-0024.Search in Google Scholar
9. Majid, F., Bashir, M., Bibi, I., Ayub, M., Khan, B. S., Somaily, H. H., Al-Mijalli, S. H., Nazir, A., Iqbal, S., Iqbal, M. Z. Phys. Chem. 2023, 237, 1345. https://doi.org/10.1515/zpch-2022-0097.Search in Google Scholar
10. Xia, Z., Min, J., Zhou, S., Ma, H., Zhang, B., Tang, X. Ceram. Int. 2021, 47, 12667. https://doi.org/10.1016/j.ceramint.2021.01.127.Search in Google Scholar
11. Shafaei, S., Dorrstein, J., Guggenbichler, J. P., Zollfrank, C. Lett. Appl. Microbiol. 2017, 64, 43. https://doi.org/10.1111/lam.12670.Search in Google Scholar PubMed
12. Wang, X., Li, Q., Miao, Y., Chen, X., Zhang, X., Shi, J., Liu, F., Wang, X., Li, Z., Yang, Y., Zhang, X., Wang, J., Duan, J. ACS Nano 2023, 17, 15568. https://doi.org/10.1021/acsnano.3c02304.Search in Google Scholar PubMed
13. Mohammadi, A., Mirzaei, A., Javanshir, S. RSC Adv. 2022, 12, 16215. https://doi.org/10.1039/D2RA01640K.Search in Google Scholar PubMed PubMed Central
14. Liao, J., Wang, L., Ding, S., Tian, G., Hu, H., Wang, Q., Yin, W. Nano Today 2023, 50, 101875. https://doi.org/10.1016/j.nantod.2023.101875.Search in Google Scholar
15. Tetault, N., Gbaguidi-Haore, H., Bertrand, X., Quentin, R., van der Mee-Marquet, N. Antimicrob. Resist. Infect. Control 2012, 1, 1. https://doi.org/10.1186/2047-2994-1-35.Search in Google Scholar PubMed PubMed Central
16. Mardare, C. C., Hassel, A. W. ACS Comb. Sci. 2014, 16, 631. https://doi.org/10.1021/co5000536.Search in Google Scholar PubMed
17. Shujah, T., Shahzadi, A., Haider, A., Mustajab, M., Haider, A. M., Hamid, A., Haider, J., Nabgan, W., Ikram, M. RSC Adv. 2022, 12, 35177. https://doi.org/10.1039/D2RA07238F.Search in Google Scholar
18. Tanasic, D., Rathner, A., Kollender, J. P., Rathner, P., Müller, N., Zelenka, K. C., Hassel, A. W., Mardare, C. C. Biointerphases 2017, 12, 05G607. https://doi.org/10.1116/1.4996434.Search in Google Scholar PubMed
19. Davies, J., Davies, D. Microbiol. Mol. Biol. Rev. 2010, 74, 417. https://doi.org/10.1128/mmbr.00016-10.Search in Google Scholar
20. Shameem, A., Devendran, P., Murugan, A., Siva, V., Ramadoss, G., Hussain, S., Asath Bahadur, S. Sustain. Mater. Technol. 2023, 37, e00661. https://doi.org/10.1016/j.susmat.2023.e00661.Search in Google Scholar
21. Shameem, A., Devendran, P., Murugan, A., Siva, V., Asath Bahadur, S. J. Phys. Chem. Solids 2023, 179, 111392. https://doi.org/10.1016/j.jpcs.2023.111392.Search in Google Scholar
22. Shameem, A., Devendran, P., Murugan, A., Siva, V., Asath Bahadur, S. J. Energy Storage 2023, 73, 108856. https://doi.org/10.1016/j.est.2023.108856.Search in Google Scholar
23. Shameem, A., Devendran, P., Murugan, A., Siva, V., Seevakan, K., Hussain, S., Sivaganesh, D., Asath Bahadur, S. J. Alloys Compd. 2023, 968, 171825. https://doi.org/10.1016/j.jallcom.2023.171825.Search in Google Scholar
24. Shameem, A., Devendran, P., Siva, V., Murugan, A., Sasikumar, S., Nallamuthu, N., Hussain, S., Asath Bahadur, S. Solid State Sci. 2020, 106, 106303. https://doi.org/10.1016/j.solidstatesciences.2020.106303.Search in Google Scholar
25. Shameem, A., Devendran, P., Siva, V., Packiaraj, R., Nallamuthu, N., Asath Bahadur, S. J. Mater. Sci. Mater. Electron. 2019, 30, 3305. https://doi.org/10.1007/s10854-018-00603-3.Search in Google Scholar
26. Mobeen, A., Maria Magdalane, C., Jasmine Shahina, S. K., Lakshmi, D., Sundaram, R., Ramalingam, G., Raja, A., Madhavan, J., Letsholathebe, D., Bashir, A. K. H., Maaza, M., Kaviyarasu, K. Surface. Interfac. 2019, 17, 100381. https://doi.org/10.1016/j.surfin.2019.100381.Search in Google Scholar
27. Rajagopal, G., Manivannan, N., Sundararajan, M., Kumar, A. G., Samuthirarajan, S., Mathivanan, N., Ilango, S. Nano Express 2021, 1, 010010. https://doi.org/10.1088/2632-959X/abd965.Search in Google Scholar
28. Chitra Devi, A., Siva, V., Thangarasu, S., Athimoolam, S., Asath Bahadur, S. J. Mol. Struct. 2021, 1245, 131033. https://doi.org/10.1016/j.molstruc.2021.131033.Search in Google Scholar
29. Oliveira, C. A., Volanti, D. P., Nogueira, A. E., Zamperini, C. A., Vergani, C. E., Longo, E. Mater. Des. 2017, 115, 73. https://doi.org/10.1016/j.matdes.2016.11.032.Search in Google Scholar
30. Zhao, H., Xia, J., Yin, D., Luo, M., Yan, C., Du, Y. Coord. Chem. Rev. 2019, 390, 32. https://doi.org/10.1016/j.ccr.2019.03.011.Search in Google Scholar
31. Man, Y., Zong, R., Zhu, Y. Acta Phys. Sin. 2007, 23, 1671. https://doi.org/10.1016/S1872-1508(07)60080-1.Search in Google Scholar
32. Sharma, P., Minakshi Sundaram, M., Singh, D., Ahuja, R. ACS Appl. Energy Mater. 2020, 3, 12385. https://doi.org/10.1021/acsaem.0c02380.Search in Google Scholar
33. Zăvoianu, R., Pavel, O. D., Cruceanu, A., Preda, C., Niţu, C. S., Angelescu, E. Prog. Catal. 2003, 12, 83.Search in Google Scholar
34. Wu, X., Ng, Y. H., Wen, X., Chung, H. Y., Wong, R. J., Du, Y., Dou, S. X., Amal, R., Scott, J. J. Chem. Eng. 2018, 353, 636. https://doi.org/10.1016/j.cej.2018.07.149.Search in Google Scholar
35. Yang, L., Wang, J., Wan, Y., Li, Y., Xie, H., Cheng, H., Seo, H. J. J. Alloys Compd. 2016, 664, 756. https://doi.org/10.1016/j.jallcom.2015.10.037.Search in Google Scholar
36. Soni, S., Chouhan, N., Meena, R. K., Kumar, S., Dalela, B., Mishra, M., Meena, R. S., Gupta, G., Kumar, S., Alvi, P. A., Dalela, S. Global Chall. 2019, 3, 1800090. https://doi.org/10.1002/gch2.201800090.Search in Google Scholar PubMed PubMed Central
37. Ray, S. K., Dhakal, D., Sohng, J. K., Kim, S.-Y., Lee, S. W. J. Chem. Eng. 2018, 347, 366. https://doi.org/10.1016/j.cej.2018.04.122.Search in Google Scholar
38. Singh, B. P., Parchur, A. K., Ningthoujam, R. S., Ansari, A. A., Singh, P., Rai, S. B. Dalton Trans. 2014, 43, 4779. https://doi.org/10.1039/C3DT53408A.Search in Google Scholar PubMed
39. Khajuria, S., Sanotra, S., Ladol, J., Sheikh, H. N. J. Mater. Sci. Mater. Electron. 2015, 26, 7073. https://doi.org/10.1007/s10854-015-3328-1.Search in Google Scholar
40. Song, H., Ko, K., Oh, I., Lee, B. Eur. Cell. Mater. 2006, 11(Suppl. 1), 58.Search in Google Scholar
41. Cui, J., Liang, Y., Yang, D., Liu, Y. Sci. Rep. 2016, 6, 21423. https://doi.org/10.1038/srep21423.Search in Google Scholar PubMed PubMed Central
42. Matsumoto, T., Sunada, K., Nagai, T., Isobe, T., Matsushita, S., Ishiguro, H., Nakajima, A. Mater. Sci. Eng. C 2020, 117, 111323. https://doi.org/10.1016/j.msec.2020.111323.Search in Google Scholar PubMed PubMed Central
43. Panáček, A., Kvitek, L., Prucek, R., Kolář, M., Večeřová, R., Pizúrová, N., Sharma, V. K., Nevěčná, T., Zbořil, R. J. Phys. Chem. B 2006, 110, 16248. https://doi.org/10.1021/jp063826h.Search in Google Scholar PubMed
© 2024 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Contributions to “Materials for Solar Water Splitting”
- Unveiling the role of rare earth dopant in metal molybdate nanocomposites via facile microwave-combustion strategy and their effect on antibacterial activity
- Effect of lanthanum (La) substitution on the magnetic and electrical properties of nickel ferrites: an investigation of its doping concentrations
- The relationship between environmental factors and dust accumulation by machine learning
- Facile formation of STO/gC3N4 hybrid composite to effectively degrade the dye and antibiotic under white light
- Investigation of the composition and morphology of raw materials from the Aral Sea region
- Chemical state and atomic structure in stoichiovariants photochromic oxidized yttrium hydride thin films
- Single crystal of barium bis para-nitrophenolate para-nitrophenol tetrahydrate for NLO applications: crystal growth and DFT analysis
- Characterization of single-crystal phenothiazine synthesized using the vertical Bridgman method
- Amidoxime functionalized mesoporous silica nanoparticles for pH-responsive delivery of anticancer drug
- Exploring optical and electrochemical studies on thulium selenite (TmSeO3)
Articles in the same Issue
- Frontmatter
- Contributions to “Materials for Solar Water Splitting”
- Unveiling the role of rare earth dopant in metal molybdate nanocomposites via facile microwave-combustion strategy and their effect on antibacterial activity
- Effect of lanthanum (La) substitution on the magnetic and electrical properties of nickel ferrites: an investigation of its doping concentrations
- The relationship between environmental factors and dust accumulation by machine learning
- Facile formation of STO/gC3N4 hybrid composite to effectively degrade the dye and antibiotic under white light
- Investigation of the composition and morphology of raw materials from the Aral Sea region
- Chemical state and atomic structure in stoichiovariants photochromic oxidized yttrium hydride thin films
- Single crystal of barium bis para-nitrophenolate para-nitrophenol tetrahydrate for NLO applications: crystal growth and DFT analysis
- Characterization of single-crystal phenothiazine synthesized using the vertical Bridgman method
- Amidoxime functionalized mesoporous silica nanoparticles for pH-responsive delivery of anticancer drug
- Exploring optical and electrochemical studies on thulium selenite (TmSeO3)