Home Physical Sciences Potential of Gd-based nanocomposites (GdFeO3) as photocatalysts for the degradation of organic pollutants: a review
Article
Licensed
Unlicensed Requires Authentication

Potential of Gd-based nanocomposites (GdFeO3) as photocatalysts for the degradation of organic pollutants: a review

  • Fawad Ali , Muhammad Ikram , Zhang Feng , Muhammad Zahoor EMAIL logo and Muhammad Naveed Khalil
Published/Copyright: November 20, 2023

Abstract

Gadolinium-based photocatalysts have gained interest in the past few years for their exceptional qualities and are currently being explored as potential photocatalysts for the degradation of organic pollutants and environment restoration. This review paper presents an in-depth examination of the photo-catalytic capabilities of Gadolinium-based nanoparticles (Gd-NPs) and their wide range of applications in the treatment of wastewater and other pollutants. The production processes, optimization variables, modifying procedures, diverse applications, and anti-stokes-up transformation features of Gd-NPs (GdFeO3) have been discussed. Furthermore, it also intends to better understand the redox properties, charge transport, bandgap tenability, blemish management and harmful effects of Gd photocatalysts. The disadvantages of Gadolinium-based small particles remained reviewed and addressed with modified approaches. These findings of literature suggest that Gd-NPs, nano-composite material/heterojunctions, or upconversion nanomaterials are being intensively reported in literature as photocatalytic materials. As a whole, this study offers light on current breakthroughs in Gd-based nanomaterials in regard to their uses in pollution elimination, and to control over environmental pollution and toxicity.


Corresponding author: Muhammad Zahoor, Department of Biochemistry, University of Malakand, Chakdara, Dir Lower Khyber Pakhtunkhwa, Pakistan, E-mail:
Fawad Ali, Muhammad Ikram, Zhang Feng, and Muhammad Zahoor contributed equally.
  1. Research ethics: Not Applicable.

  2. Research funding: Not applicable.

  3. Conflict of interest: The authors declare no conflicts of interest regarding this article.

  4. Author contributions: FA and MI wrote the paper. MZ, ZF, and MNK revised the paper. Final proof reading was done by MZ. All authors have read and agreed to the published version of the manuscript.

  5. Data availability: No data is associated with this publication.

References

1. Agceli, G. K., Hammachi, H., Kodal, S. P., Cihangir, N., Aksu, Z. A novel approach to synthesize TiO2 nanoparticles: biosynthesis by using Streptomyces sp. HC1. J. Inorg. Organomet. Polym. Mater. 2020, 30, 3221–3229; https://doi.org/10.1007/s10904-020-01486-w.Search in Google Scholar

2. Ahmed, M. A., El-Katori, E. E., Gharni, Z. H. Photocatalytic degradation of methylene blue dye using Fe2O3/TiO2 nanoparticles prepared by sol–gel method. J. Alloys Comp. 2013, 553, 19–29; https://doi.org/10.1016/j.jallcom.2012.10.038.Search in Google Scholar

3. Ikram, M., Naeem, M., Zahoor, M., Hanafiah, M. M., Oyekanmi, A. A., Ullah, R., Farraj, D. A. A., Elshikh, M. S., Zekker, I., Gulfam, N. Biological degradation of the azo dye basic orange 2 by Escherichia coli: a sustainable and ecofriendly approach for the treatment of textile wastewater. Water 2022, 14, 2063; https://doi.org/10.3390/w14132063.Search in Google Scholar

4. Ikram, M., Naeem, M., Zahoor, M., Hanafiah, M. M., Oyekanmi, A. A., Shah, A. B., Mahnashi, M. H., Al Ali, A., Jalal, N. A., Bantun, F., Sadiq, A. Biodegradation of azo dye methyl red by Pseudomonas aeruginosa: optimization of process conditions. Int. J. Environ. Res. Public Health 2022, 19, 9962; https://doi.org/10.3390/ijerph19169962.Search in Google Scholar PubMed PubMed Central

5. Ikram, M., Naeem, M., Zahoor, M., Hanafiah, M. M., Oyekanmi, A. A., Islam, N. U., Ullah, M., Mahnashi, M. H., Ali, A. A., Jalal, N. A., Bantun, F., Momenah, A. M., Sadiq, A. Bacillus subtilis: as an efficient bacterial strain for the reclamation of water loaded with textile azo dye, Orange II. Int. J. Mol. Sci. 2022, 23, 10637; https://doi.org/10.3390/ijms231810637.Search in Google Scholar PubMed PubMed Central

6. Ullah Khan, A., Zahoor, M., Ur Rehman, M., Ikram, M., Zhu, D., Umar, M. N., Ullah, R., Ali, E. A. Bioremediation of azo dye Brown 703 by Pseudomonas aeruginosa: an effective treatment technique for dye-polluted wastewater. Microbiol. Res. 2023, 14, 1049–1066; https://doi.org/10.3390/microbiolres14030070.Search in Google Scholar

7. Ikram, M., Zahoor, M., Batiha, G. E. S. Biodegradation and decolorization of textile dyes by bacterial strains: a biological approach for wastewater treatment. Z. Phy. Chem. 2021, 235, 1381–1393; https://doi.org/10.1515/zpch-2020-1708.Search in Google Scholar

8. Ikram, M., Zahoor, M., Naeem, M., Islam, N. U., Shah, A. B., Shahzad, B. Bacterial oxidoreductive enzymes as molecular weapons for the degradation and metabolism of the toxic azo dyes in wastewater: a review. Z. Phys. Chem. 2023, 137, 187–209; https://doi.org/10.1515/zpch-2022-0150.Search in Google Scholar

9. Ikram, M., Zahoor, M., Khan, E., Khayam, S. M. U. Biodegradation of novacron turqueiose (reactive blue 21) by Pseudomonas aeruginosa. J. Chem. Soc. Pak. 2020, 42, 737–745.10.52568/000677/JCSP/42.05.2020Search in Google Scholar

10. Wei, Y., Cheng, Z., Lin, J. An overview on enhancing the stability of lead halide perovskite quantum dots and their applications in phosphor-converted LEDs. Chem. Soc. Rev. 2019, 48, 310–350; https://doi.org/10.1039/c8cs00740c.Search in Google Scholar PubMed

11. Wang, L., Zhou, H., Hu, J., Huang, B., Sun, M., Dong, B., Zheng, G., Huang, Y., Chen, Y., Li, L., Xu, Z., Liu, Z., Chen, Q., Sun, L. D., Yan, C. H. A Eu3+–Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science 2019, 363, 265–270; https://doi.org/10.1126/science.aau5701.Search in Google Scholar PubMed

12. Arun, B., Akshay, V. R., Vasundhara, M. Observation of enhanced magnetic entropy change near room temperature in Sr-site deficient La 0.67 Sr 0.33 MnO 3 manganite. RSC Adv. 2019, 9, 23598–23606; https://doi.org/10.1039/c9ra04973h.Search in Google Scholar PubMed PubMed Central

13. Li, F., Cabral, M. J., Xu, B., Cheng, Z., Dickey, E. C., LeBeau, J. M., Wang, J., Luo, J., Taylor, S., Hackenberger, W., Bellaiche, L., Xu, Z., Chen, L. Q., Shrout, T. R., Zhang, S. Giant piezoelectricity of Sm-doped Pb (Mg1/3Nb2/3) O3-PbTiO3 single crystals. Science 2019, 364, 264–268; https://doi.org/10.1126/science.aaw2781.Search in Google Scholar PubMed

14. Saha, R., Sundaresan, A., Rao, C. N. R. Novel features of multiferroic and magnetoelectric ferrites and chromites exhibiting magnetically driven ferroelectricity. Mater. Horiz. 2014, 1, 20–31; https://doi.org/10.1039/c3mh00073g.Search in Google Scholar

15. Gao, X., Zhou, B., Yuan, R. Doping a metal (Ag, Al, Mn, Ni and Zn) on TiO2 nanotubes and its effect on Rhodamine B photocatalytic oxidation. Environ. Eng. Res. 2015, 20, 329–335; https://doi.org/10.4491/eer.2015.062.Search in Google Scholar

16. Hou, C., Liu, H., Li, Y. The preparation of three-dimensional flower-like TiO 2/TiOF2 photocatalyst and its efficient degradation of tetracycline hydrochloride. RSC Adv. 2021, 11, 14957–14969; https://doi.org/10.1039/d1ra01772a.Search in Google Scholar PubMed PubMed Central

17. Ghoderao, K. P., Jamble, S. N., Kale, R. B. Influence of reaction temperature on hydrothermally grown TiO2 nanorods and their performance in dye-sensitized solar cells. Superlattice. Microst. 2018, 124, 121–130; https://doi.org/10.1016/j.spmi.2018.09.038.Search in Google Scholar

18. Daud, A., Warsi, M. F., Zulfiqar, S., Agboola, P. O., Rehman, A. U., Shakir, I. Fabrication of GdFO3-Carbon nanotubes nanocomposites for enhanced photocatalytic applications. Ceram. Int. 2020, 46, 12884–12890; https://doi.org/10.1016/j.ceramint.2020.01.205.Search in Google Scholar

19. Maity, R., Dutta, A., Halder, S., Shannigrahi, S., Mandal, K., Sinha, T. P. Enhanced photocatalytic activity, transport properties and electronic structure of Mn doped GdFeO 3 synthesized using the sol–gel process. Phys. Chem. Chem. Phys. 2021, 23, 16060–16076; https://doi.org/10.1039/d1cp00621e.Search in Google Scholar PubMed

20. Li, L., Wang, F., Feng, J., Guo, S., Xu, M., Wang, L., Quan, G. Step-scheme GdFeO3/g-C3N4 heterostructures with outstanding photocatalytic activity. J. Mater. Sci. Mater Electron. 2021, 32, 16400–16410; https://doi.org/10.1007/s10854-021-06193-x.Search in Google Scholar

21. Hunagund, S. M., Desai, V. R., Barretto, D. A., Pujar, M. S., Kadadevarmath, J. S., Vootla, S., Sidarai, A. H. Photocatalysis effect of a novel green synthesis gadolinium doped titanium dioxide nanoparticles on their biological activities. J. Photochem. Photobiol. A.Chem. 2017, 346, 159–167; https://doi.org/10.1016/j.jphotochem.2017.06.003.Search in Google Scholar

22. McDonald, J. S., McDonald, R. J. MR imaging safety considerations of gadolinium-based contrast agents: gadolinium retention and nephrogenic systemic fibrosis. Magn. Reson. Imaging Clin. 2020, 28, 497–507; https://doi.org/10.1016/j.mric.2020.06.001.Search in Google Scholar PubMed

23. Harini, G., Balasurya, S., Khan, S. S. Recent advances on gadolinium-based nano-photocatalysts for environmental remediation and clean energy production: properties, fabrication, defect engineering and toxicity. J. Clean. Prod. 2022, 345, 131139; https://doi.org/10.1016/j.jclepro.2022.131139.Search in Google Scholar

24. Merino, N. A., Barbero, B. P., Ruiz, P., Cadús, L. E. Synthesis, characterisation, catalytic activity and structural stability of LaCo1−yFeyO3±λ perovskite catalysts for combustion of ethanol and propane. J. Catal. 2006, 240, 245–257; https://doi.org/10.1016/j.jcat.2006.03.020.Search in Google Scholar

25. Mccammon, C. Crystal chemistry of iron-containing perovskites. Phase Transitions 1996, 58, 26; https://doi.org/10.1080/01411599608242391.Search in Google Scholar

26. Mueller, D. N., De Souza, R. A., Yoo, H. I., Martin, M. Phase stability and oxygen nonstoichiometry of highly oxygen-deficient perovskite-type oxides: a case study of (Ba, Sr)(Co, Fe) O3− δ. Chem. Mater. 2012, 24, 269–274; https://doi.org/10.1021/cm2033004.Search in Google Scholar

27. Emsley, J. Nature’s Building Blocks: An AZ Guide to the Elements; Oxford University Press: Oxford, 2011.Search in Google Scholar

28. Kumar Padhi, D., Pradhan, G. K., Parida, K. M., Singh, S. K. Facile fabrication of Gd (OH)3 nanorod/RGO composite: synthesis, characterisation and photocatalytic reduction of Cr (VI). J. Chem. Eng. 2004, 255, 78–88; https://doi.org/10.1016/j.cej.2014.06.039.Search in Google Scholar

29. Deng, H., Chen, F., Yang, C., Chen, M., Li, L., Chen, D. Effect of Eu doping concentration on fluorescence and magnetic resonance imaging properties of Gd2O3: Eu3+ nanoparticles used as dual-modal contrast agent. Nanotechnol 2018, 29, 415601; https://doi.org/10.1088/1361-6528/aad347.Search in Google Scholar PubMed

30. Dhanalakshmi, S., Senthil Kumar, P., Karuthapandian, S., Muthuraj, V., Prithivikumaran, N. Design of Gd2O3 nanorods: a challenging photocatalyst for the degradation of neurotoxicity chloramphenicol drug. J. Mater. Sci.: Mater. Electron. 2019, 30, 3744–3752; https://doi.org/10.1007/s10854-018-00656-4.Search in Google Scholar

31. Mkhalid, I. A. Photocatalytic remediation of atrazine under visible light radiation using Pd-Gd2O3 nanospheres. J. Alloys Compd. 2016, 682, 766–772; https://doi.org/10.1016/j.jallcom.2016.05.015.Search in Google Scholar

32. Haron, W., Wisitsoraat, A., Sirimahachai, U., Wongnawa, S. A simple synthesis and characterization of LaMO3 (M = Al, Co, Fe, Gd) perovskites via chemical co-precipitation method. Songklanakarin J. Sci. Technol. 2018, 40, 484–491.Search in Google Scholar

33. Jayanthi, G., Sumathi, S., Kannan, K., Andal, V., Murugan, S. A review on synthesis, properties, and environmental application of Fe-based perovskite. Adv. Mater. Sci. Eng. 2022, 2022, 1–14; https://doi.org/10.1155/2022/6607683.Search in Google Scholar

34. Lee, S., Lingamdinne, L. P., Yang, J. K., Chang, Y. Y., Koduru, J. R. Potential electromagnetic column treatment of heavy metal contaminated water using porous Gd2O3-doped graphene oxide nanocomposite: characterization and surface interaction mechanisms. J. Water Process. Eng. 2021, 41, 102083; https://doi.org/10.1016/j.jwpe.2021.102083.Search in Google Scholar

35. Li, X., Yang, J., Zhang, Y., Zhang, W. Polyethylene glycol in sol–gel precursor to prepare porous Gd2Ti2O7: enhanced photocatalytic activity on Reactive Brilliant Red X-3B degradation. Mater. Sci. Semicond. Process. 2020, 117, 105181; https://doi.org/10.1016/j.mssp.2020.105181.Search in Google Scholar

36. Butler, M. A., Ginley, D. S., Eibschutz, M. Photoelectrolysis with YFeO3 electrodes. J. Appl. Phys. 1977, 48, 3070–3072; https://doi.org/10.1063/1.324076.Search in Google Scholar

37. Liu, Z., Zhong, Y., Hu, Z., Zhang, W., Zhang, X., Ji, X., Wang, X. Modification of ZIF-8 nanocomposite by a Gd atom doped TiO2 for high efficiency photocatalytic degradation of neutral red dye: an experimental and theoretical study. J. Mol. Liq. 2023, 380, 121729; https://doi.org/10.1016/j.molliq.2023.121729.Search in Google Scholar

38. Kalisamy, P., Hossain, M. S., Macadangdang, R. R.Jr, Madhubala, V., Palanivel, B., Venkatachalam, M., Massoud, E. E. S., Sreedevi, G. ZnO coupled F-doped g-C3N4: Z-scheme heterojunction for visible-light driven photocatalytic degradation reaction. Inorg. Chem. Commun. 2022, 135, 109102; https://doi.org/10.1016/j.inoche.2021.109102.Search in Google Scholar

39. Shkir, M., Palanivel, B., Khan, A., Ahmad, N., Mani, A. Tailoring the structural, optical and remarkably enhanced photocatalytic activities of nickel oxide nanostructures through cobalt doping. Surf. Interfac. 2021, 27, 101515; https://doi.org/10.1016/j.surfin.2021.101515.Search in Google Scholar

40. Wang, S., Chen, Z., Zhao, Y., Sun, C., Li, J. High photocatalytic activity over starfish-like La-doped ZnO/SiO2 photocatalyst for malachite green degradation under visible light. J. Rare Earths 2021, 39, 772–780; https://doi.org/10.1016/j.jre.2020.04.009.Search in Google Scholar

41. Palanivel, B., Macadangdang, R. R.Jr, Hossain, M. S., Alharthi, F. A., Kumar, M., Chang, J. H., Gedi, S. Rare earth (Gd, La) co-doped ZnO nanoflowers for direct sunlight driven photocatalytic activity. J. Rare Earths 2023, 41, 77–84; https://doi.org/10.1016/j.jre.2022.01.009.Search in Google Scholar

42. Yadav, R. V., Yadav, R. S., Bahadur, A., Singh, A. K., Rai, S. B. Enhanced quantum cutting via Li+ doping from a Bi3+/Yb3+-codoped gadolinium tungstate phosphor. Inorg.Chem. 2016, 55, 10928–10935; https://doi.org/10.1021/acs.inorgchem.6b01439.Search in Google Scholar PubMed

43. Rahimi-Nasrabadi, M., Pourmortazavi, S. M., Aghazadeh, M., Ganjali, M. R., Karimi, M. S., Novrouzi, P. Optimizing the procedure for the synthesis of nanoscale gadolinium (III) tungstate as efficient photocatalyst. J. Mater. Sci. Mater. Electron. 2017, 28, 3780–3788; https://doi.org/10.1007/s10854-016-5988-x.Search in Google Scholar

44. Periyasamy, S., Vinoth Kumar, J., Chen, S. M., Annamalai, Y., Karthik, R., Erumaipatty Rajagounder, N. Structural insights on 2D gadolinium tungstate nanoflake: a promising electrocatalyst for sensor and photocatalyst for the degradation of postharvest fungicide (carbendazim). ACS Appl. Mater. Interfaces 2019, 11, 37172–37183; https://doi.org/10.1021/acsami.9b07336.Search in Google Scholar PubMed

45. Chandel, N., Sharma, K., Sudhaik, A., Raizada, P., Hosseini-Bandegharaei, A., Thakur, V. K., Singh, P. Magnetically separable ZnO/ZnFe2O4 and ZnO/CoFe2O4 photocatalysts supported onto nitrogen doped graphene for photocatalytic degradation of toxic dyes. Arabian J. Chem. 2020, 13, 4324–4340; https://doi.org/10.1016/j.arabjc.2019.08.005.Search in Google Scholar

46. Salavati-Niasari, M., Hosseinzadeh, G., Davar, F. Synthesis of lanthanum hydroxide and lanthanum oxide nanoparticles by sonochemical method. J. Alloys Compd. 2011, 509, 4098–4103; https://doi.org/10.1016/j.jallcom.2010.07.083.Search in Google Scholar

47. Mohassel, R., Sobhani, A., Salavati-Niasari, M., Goudarzi, M. Pechini synthesis and characteristics of Gd2CoMnO6 nanostructures and its structural, optical and photocatalytic properties. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2018, 204, 232–240; https://doi.org/10.1016/j.saa.2018.06.050.Search in Google Scholar PubMed

48. Liu, B., Zhou, K. Recent progress on graphene-analogous 2D nanomaterials: properties, modeling and applications. Prog. Mater. Sci. 2019, 100, 99–169; https://doi.org/10.1016/j.pmatsci.2018.09.004.Search in Google Scholar

49. Majid, F., Mirza, S. T., Riaz, S., Naseem, S. Sol–gel synthesis of BiFeO3 nanoparticles. Mater. Today: Proc. 2015, 2, 5293–5297; https://doi.org/10.1016/j.matpr.2015.11.038.Search in Google Scholar

50. Theingi, M., Tun, K. T., Aung, N. N. Preparation, characterization and optical property of LaFeO3 nanoparticles via sol–gel combustion method. Sci. Med. J. 2019, 1, 151–157; https://doi.org/10.28991/scimedj-2019-0103-5.Search in Google Scholar

51. Liu, C., Wang, W., Chen, D. Hydrogen-rich syngas production from chemical looping gasification of biomass char with CaMn1–xFexO3. Energy Fuel. 2018, 32, 9541–9550; https://doi.org/10.1021/acs.energyfuels.8b01836.Search in Google Scholar

52. Aziz, A., Ahmed, E., Ashiq, M. N., Irfan, M., Ismail, M., Ali, I., Khan, M. A. Impact of Gd and Cu substitution on dielectric and magnetic properties of MnFeO3 multiferroic materials. Phys. B: Condens. Matter. 2019, 571, 199–203; https://doi.org/10.1016/j.physb.2019.07.024.Search in Google Scholar

53. Shabbir, G., Qureshi, A. H., Saeed, K. Nano-crystalline LaFeO3 powders synthesized by the citrate–gel method. Mater. Lett. 2006, 60, 3706–3709; https://doi.org/10.1016/j.matlet.2006.03.093.Search in Google Scholar

54. Çoban Özkan, D., Türk, A., Celik, E. Synthesis and characterizations of sol–gel derived LaFeO3 perovskite powders. J. Mater. Sci. Mater. Electron. 2020, 31, 22789–22809; https://doi.org/10.1007/s10854-020-04803-8.Search in Google Scholar

55. Gómez-Cuaspud, J. A., Vera-López, E., Carda-Castelló, J. B., Barrachina-Albert, E. One-step hydrothermal synthesis of LaFeO3 perovskite for methane steam reforming. React. Kinet. Mech. Catal. 2017, 120, 167–179; https://doi.org/10.1007/s11144-016-1092-8.Search in Google Scholar

56. Sazali, M. S., Yaakob, M. K., Mohamed, Z., Mamat, M. H., Hassan, O. H., Kaus, N. H. M., Yahya, M. Z. A. Chitosan-assisted hydrothermal synthesis of multiferroic BiFeO3: effects on structural, magnetic and optical properties. Reults Phys. 2019, 15, 102740; https://doi.org/10.1016/j.rinp.2019.102740.Search in Google Scholar

57. Syed, A., Siddaramanna, A., Elgorban, A. M., Hakeem, D. A., Nagaraju, G. Hydrogen peroxide-assisted hydrothermal synthesis of bifeo3 microspheres and their dielectric behavior. Magnetochemistry 2020, 6, 42, https://doi.org/10.3390/magnetochemistry6030042.Search in Google Scholar

58. Muneeswaran, M., Jegatheesan, P., Giridharan, N. V. Synthesis of nanosized BiFeO3 powders by co-precipitation method. J. Exp. Nanosci. 2013, 8, 341–346; https://doi.org/10.1080/17458080.2012.685954.Search in Google Scholar

59. Biasotto, G., Simões, A. Z., Foschini, C. R., Zaghete, M. A., Varela, J. A., Longo, E. Microwave-hydrothermal synthesis of perovskite bismuth ferrite nanoparticles. Mater. Res. Bull. 2011, 46, 2543–2547; https://doi.org/10.1016/j.materresbull.2011.08.010.Search in Google Scholar

60. Khorasani-Motlagh, M., Noroozifar, M., Yousefi, M., Jahani, S. Chemical synthesis and characterization of perovskite NdFeO3 nanocrystals via a co-precipitation method. Int. J. Nanotechnol. Nanosci. 2013, 9, 7–14.10.1007/s13738-012-0100-9Search in Google Scholar

61. Fernández-Barahona, I., Muñoz-Hernando, M., Herranz, F. Microwave-driven synthesis of iron-oxide nanoparticles for molecular imaging. Molecules 2019, 24, 1224; https://doi.org/10.3390/molecules24071224.Search in Google Scholar PubMed PubMed Central

62. Komarneni, S., Menon, V. C., Li, Q. H., Roy, R., Ainger, F. Microwave hydrothermal processing of BiFeO3 and CsAl2PO6. J.Am. Ceram. Soc. 1996, 79, 1409–1412; https://doi.org/10.1111/j.1151-2916.1996.tb08605.x.Search in Google Scholar

63. Joshi, U. A., Jang, J. S., Borse, P. H., Lee, J. S. Microwave synthesis of single-crystalline perovskite Bi Fe O3 nanocubes for photoelectrode and photocatalytic applications. Appl. Phys. Lett. 2008, 92, 242106; https://doi.org/10.1063/1.2946486.Search in Google Scholar

64. Zhu, X., Hang, Q., Xing, Z., Yang, Y., Zhu, J., Liu, Z., Ming, N., Zhou, P., Song, Y., Li, Z., Yu, T., Zou, Z. Microwave hydrothermal synthesis, structural characterization, and visible light photocatalytic activities of single crystalline bismuth ferric nanocrystals. J. Am. Ceram. Soc. 2011, 94, 2688–2693; https://doi.org/10.1111/j.1551-2916.2011.04430.x.Search in Google Scholar

65. Galasso, F. S. Structure, Properties and Preparation of Perovskite-type Compounds: International Series of Monographs in Solid State Physics, Vol. 5; Elsevier, 2013.Search in Google Scholar

66. Phokha, S., Pinitsoontorn, S., Maensiri, S., Rujirawat, S. Structure, optical and magnetic properties of LaFeO3 nanoparticles prepared by polymerized complex method. J. Solgel. Sci. Technol. 2014, 71, 333–341; https://doi.org/10.1007/s10971-014-3383-8.Search in Google Scholar

67. Anikina, P. V., Markov, A. A., Patrakeev, M. V., Leonidov, I. A., Kozhevnikov, V. L. High-temperature transport and stability of SrFe1− xNbxO3− δ. Solid State Sci. 2009, 11, 1156–1162; https://doi.org/10.1016/j.solidstatesciences.2009.02.016.Search in Google Scholar

68. Sumithra, S., Jaya, N. V. Structural, optical and magnetization studies of Fe-doped CaSnO3 nanoparticles via hydrothermal route. J. Mater. Sci. Mater. Electron. 2018, 29, 4048–4057; https://doi.org/10.1007/s10854-017-8348-6.Search in Google Scholar

69. Lan, R., Cowin, P. I., Sengodan, S., Tao, S. A perovskite oxide with high conductivities in both air and reducing atmosphere for use as electrode for solid oxide fuel cells. Sci. Rep. 2016, 6, 31839; https://doi.org/10.1038/srep31839.Search in Google Scholar PubMed PubMed Central

70. Hung, N. T., Bac, L. H., Trung, N. N., Hoang, N. T., Van Vinh, P., Dung, D. D. Room-temperature ferromagnetism in Fe-based perovskite solid solution in lead-free ferroelectric Bi0. 5Na0. 5TiO3 materials. J. Magn. Magn. Mater. 2018, 451, 183–186; https://doi.org/10.1016/j.jmmm.2017.11.015.Search in Google Scholar

71. Guigoz, V., Balan, L., Aboulaich, A., Schneider, R., Gries, T. Heterostructured thin LaFeO3/g-C3N4 films for efficient photoelectrochemical hydrogen evolution. Int. J. Hydrg.Energy 2020, 45, 17468–17479; https://doi.org/10.1016/j.ijhydene.2020.04.267.Search in Google Scholar

72. Gao, J., Zhang, Y., Wang, X., Jia, L., Jiang, H., Huang, M., Toghan, A. Nitrogen-doped Sr2Fe1. 5Mo0. 5O6-δ perovskite as an efficient and stable catalyst for hydrogen evolution reaction. Mater. Today Energy 2021, 20, 100695; https://doi.org/10.1016/j.mtener.2021.100695.Search in Google Scholar

73. Ismael, M., Wark, M. Perovskite-type LaFeO3: photoelectrochemical properties and photocatalytic degradation of organic pollutants under visible light irradiation. Catalysts 2019, 9, 342; https://doi.org/10.3390/catal9040342.Search in Google Scholar

74. Chang, H., Bjørgum, E., Mihai, O., Yang, J., Lein, H. L., Grande, T., Raaen, S., Zhu, Y. A., Holmen, A., Chen, D. Effects of oxygen mobility in La–Fe-based perovskites on the catalytic activity and selectivity of methane oxidation. ACS Catal. 2020, 10, 3707–3719; https://doi.org/10.1021/acscatal.9b05154.Search in Google Scholar

75. Nkwachukwu, O. V., Arotiba, O. A. Perovskite oxide–based materials for photocatalytic and photoelectrocatalytic treatment of water. Front.Chem. 2021, 9, 634630; https://doi.org/10.3389/fchem.2021.634630.Search in Google Scholar PubMed PubMed Central

76. Xia, J., Yin, S., Li, H., Xu, H., Xu, L., Xu, Y. Improved visible light photocatalytic activity of sphere-like BiOBr hollow and porous structures synthesized via a reactable ionic liquid. Dalton Trans. 2011, 40, 5249–5258; https://doi.org/10.1039/c0dt01511c.Search in Google Scholar PubMed

77. Hu, Z., Chen, D., Wang, S., Zhang, N., Qin, L., Huang, Y. Facile synthesis of Sm-doped BiFeO3 nanoparticles for enhanced visible light photocatalytic performance. Mater. Sci. Eng: B 2017, 220, 1–12; https://doi.org/10.1016/j.mseb.2017.03.005.Search in Google Scholar

78. Jaffari, Z. H., Lam, S. M., Sin, J. C., Zeng, H. Boosting visible light photocatalytic and antibacterial performance by decoration of silver on magnetic spindle-like bismuth ferrite. Mater. Sci. Semicond. Process. 2019, 101, 103–115; https://doi.org/10.1016/j.mssp.2019.05.036.Search in Google Scholar

79. Gosavi, P. V., Biniwale, R. B. Pure phase LaFeO3 perovskite with improved surface area synthesized using different routes and its characterization. Mater. Chem.Phys. 2010, 119, 324–329; https://doi.org/10.1016/j.matchemphys.2009.09.005.Search in Google Scholar

80. Nkwachukwu, O. V., Muzenda, C., Ojo, B. O., Zwane, B. N., Koiki, B. A., Orimolade, B. O., Nkosi, D., Mabuba, N., Arotiba, O. A. Photoelectrochemical degradation of organic pollutants on a La3+ doped BiFeO3 perovskite. Catalysts 2021, 11, 1069; https://doi.org/10.3390/catal11091069.Search in Google Scholar

81. Geller, S., Wood, E. A. Crystallographic studies of perovskite-like compounds. I. Rare earth orthoferrites and YFeO3, YCrO3, YAlO3. Acta Crystallogr. 1956, 9, 563–568; https://doi.org/10.1107/s0365110x56001571.Search in Google Scholar

82. Bleaney, B. John Hasbrouck Van Vleck, 13 March 1899-27 October 1980.Search in Google Scholar

83. Geller, S. Crystal structure of gadolinium orthoferrite, GdFeO3. J.Chem.Phys. 1956, 24, 1236–1239; https://doi.org/10.1063/1.1742746.Search in Google Scholar

84. Gilleo, M. A. Magnetic properties of a gadolinium orthoferrite, GdFeO3, crystal. J. Chem. Phys. 1956, 24, 1239–1243; https://doi.org/10.1063/1.1742747.Search in Google Scholar

85. Gilleo, M. A., Geller, S. Magnetic ion interaction in Gd3Mn2 Ge2GaO12 and related garnets. J. Appl. Phys. 1959, 30, S297–S298; https://doi.org/10.1063/1.2185940.Search in Google Scholar

86. Pyykkö, P. Magically magnetic gadolinium. Nat. Chem. 2015, 7, 680; https://doi.org/10.1038/nchem.2287.Search in Google Scholar PubMed

87. Dan’Kov, S. Y., Tishin, A. M., Pecharsky, V. K., Gschneidner, K. A. Magnetic phase transitions and the magnetothermal properties of gadolinium. Phys. Rev. B 1998, 57, 3478; https://doi.org/10.1103/physrevb.57.3478.Search in Google Scholar

88. Li, Y., Li, Q., Wang, H., Zhang, L., Wilkinson, D. P., Zhang, J. Recent progresses in oxygen reduction reaction electrocatalysts for electrochemical energy applications. Electrochem. Energy Rev. 2019, 2, 518–538; https://doi.org/10.1007/s41918-019-00052-4.Search in Google Scholar

89. Lone, I. H., Khan, H., Jain, A. K., Ahmed, J., Ramanujachary, K. V., Ahmad, T. Metal–organic precursor synthesis, structural characterization, and multiferroic properties of GdFeO3 nanoparticles. ACS omega 2022, 7, 33908–33915; https://doi.org/10.1021/acsomega.2c02809.Search in Google Scholar PubMed PubMed Central

90. Balamurugan, C., Song, S., Jo, H., Seo, J. GdFeO3 perovskite oxide decorated by group X heterometal oxides and bifunctional oxygen electrocatalysis. ACS Appl. Mater. Interface. 2021, 13, 2788–2798; https://doi.org/10.1021/acsami.0c21169.Search in Google Scholar PubMed

91. Rao, V. S., Sharma, R., Paul, D. R., Almáši, M., Sharma, A., Kumar, S., Nehra, S. Architecting the Z-scheme heterojunction of Gd2O3/g-C3N4 nanocomposites for enhanced visible-light-induced photoactivity towards organic pollutants degradation. Environ. Sci. Pollut. Res. 2023, 30, 98773–98786.10.1007/s11356-023-25360-7Search in Google Scholar PubMed

92. Teng, W. A. N. G., Zhaofu, M. E. N. G., Xinxin, W. A. N. G., Amjad, A. L. I., Xuewen, C. A. O., Lin, L. I. U. Mechanism of nitrogen-fluoride co-doped TiO 2/bentonite composites removing tetracycline: a study in the co-doping ratio. Environ. Eng. Res. 2021, 26, 200440.10.4491/eer.2020.440Search in Google Scholar

93. Wang, M., Wu, Y., Juan, F., Li, Y., Shi, B., Xu, F., Jia, J., Wei, H., Cao, B. Enhanced photocurrent of perovskite solar cells by dual-sensitized β-NaYF4: Nd3+/Yb3+/Er3+ up-conversion nanoparticles. Chem. Phys. Lett. 2021, 763, 138253; https://doi.org/10.1016/j.cplett.2020.138253.Search in Google Scholar

94. Li, H., Song, H., Lai, Q., Li, Y., Egabaierdi, G., Xu, Z., Yang, S., Li, S., He, H., Zhang, S. A Gd3+-doped blue TiO2 nanotube array anode for efficient electrocatalytic degradation of iohexol. Sep. Purif. Technol. 2022, 301, 122007; https://doi.org/10.1016/j.seppur.2022.122007.Search in Google Scholar

95. Duo, S., Zhang, J., Zhang, H., Chen, Z., Zhong, C., Liu, T. Synthesis of β–NaYF4: Yb3+, Tm3+@ TiO2 and β–NaYF4: Yb3+, Tm3+@ TiO2@ Au nanocomposites and effective upconversion–driven photocatalytic properties. Opt. Mater. 2016, 62, 240–249; https://doi.org/10.1016/j.optmat.2016.10.005.Search in Google Scholar

96. Klier, D. T., Kumke, M. U. Upconversion luminescence properties of NaYF4: Yb: Er nanoparticles codoped with Gd3+. J.Phy. Chem. C 2015, 119, 3363–3373; https://doi.org/10.1021/jp5103548.Search in Google Scholar

97. Mavengere, S., Kim, J. S. UV–visible light photocatalytic properties of NaYF4:(Gd, Si)/TiO2 composites. Appl. Surf. Sci. 2018, 444, 491–496; https://doi.org/10.1016/j.apsusc.2018.03.027.Search in Google Scholar

98. Anwer, H., Park, J. W. Near-infrared to visible photon transition by upconverting NaYF4: Yb3+, Gd3+, Tm3+@ Bi2WO6 core@ shell composite for bisphenol A degradation in solar light. Appl.Catal.B. 2019, 243, 438–447; https://doi.org/10.1016/j.apcatb.2018.10.074.Search in Google Scholar

99. Kumah, E. A., Fopa, R. D., Harati, S., Boadu, P., Zohoori, F. V., Pak, T. Human and environmental impacts of nanoparticles: a scoping review of the current literature. BMC Public Health 2023, 23, 1–28; https://doi.org/10.1186/s12889-023-15958-4.Search in Google Scholar PubMed PubMed Central

100. Akhtar, M. J., Ahamed, M., Alhadlaq, H. Gadolinium oxide nanoparticles induce toxicity in human endothelial HUVECs via lipid peroxidation, mitochondrial dysfunction and autophagy modulation. Nanomaterials 2020, 10, 1675; https://doi.org/10.3390/nano10091675.Search in Google Scholar PubMed PubMed Central

101. Rogowska, J., Olkowska, E., Ratajczyk, W., Wolska, L. Gadolinium as a new emerging contaminant of aquatic environments. Environ. Toxicol. Chem. 2018, 37, 1523–1534; https://doi.org/10.1002/etc.4116.Search in Google Scholar PubMed

102. Idée, J. M., Port, M., Raynal, I., Schaefer, M., Le Greneur, S., Corot, C. Clinical and biological consequences of transmetallation induced by contrast agents for magnetic resonance imaging: a review. Fundam. Clin. Pharmacol. 2006, 20, 563–576; https://doi.org/10.1111/j.1472-8206.2006.00447.x.Search in Google Scholar PubMed

103. Liu, Z., Guo, C., Tai, P., Sun, L., Chen, Z. The exposure of gadolinium at environmental relevant levels induced genotoxic effects in Arabidopsis thaliana (L.). Ecotoxicol. Environ. Saf. 2021, 215, 112138; https://doi.org/10.1016/j.ecoenv.2021.112138.Search in Google Scholar PubMed

Received: 2023-09-26
Accepted: 2023-11-05
Published Online: 2023-11-20
Published in Print: 2024-01-29

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0366/html?lang=en
Scroll to top button