Effect of ionic strength on DNA–dye interactions of Victoria blue B and methylene green using UV–visible spectroscopy
-
Faizan Ur Rahman
, Shahab Khan , Maooz Ur Rahman , Rukhsana Zaib , Mudassir Ur Rahman , Riaz Ullah , Muhammad Zahoorand Abdul Waheed Kamran
Abstract
Victoria blue and methylene green dyes have both been extensively studied due to their numerous applications, including their ability to bind to DNA. Dyes are very important in everyday life with applications in textile, cosmetics, food and pharmaceutical industries. It has been found that some of them adversely affect human health causing severe abnormalities. Among these abnormalities, cancer is of great concern due to its fatal and almost non-recoverable nature. In this work we have studied the binding of two dyes namely Victoria blue B (VBB) and Methylene green (MG) with double stranded DNA (Salmon sperm). The interactions were studied in the presence of different concentrations of buffer solutions at a constant pH. The selected dyes showed interactions with double-stranded DNA through intercalation and electrostatic modes. Upon increasing ionic strength of the buffer the binding constant (K b ) value for MG was decreased whereas increased for VBB, which conclude that, at higher ionic strength (0.5 M) the DNA–MG interactions is lower and DNA–VVB interactions is maximum. The carcinogenicity of a given dye is indicated from its binding constants in the current study. Based on the recorded K b values of the selected dyes it was concluded that proper disposing and precautions should be taken while utilizing/dealing these dyes in order to minimize/avoid their impact on environment and human health.
Funding source: King Saud University
Award Identifier / Grant number: Unassigned
Acknowledgment
The authors extend their appreciation to the researchers supporting Project number (RSP2023R110) King Saud University, Riyadh, Saudi Arabia, for financial support.
-
Research ethics: Not applicable.
-
Author contributions: Faizan Ur Rahman and Shahab Khan prepared DNA for processing and design scheme of the study, Maooz Ur Rahman and Rukhsana Zaib interpreted the data, Mudassir Ur Rahman and R. Ullah performed validation of the data, A. W. Kamran and M. Zahoor performed UV-visible spectrum of Victoria Blue B and Methylene Green and wrote the paper and revised.
-
Competing interests: The authors declares that they have no competing interest.
-
Research funding: This work was supported by King Saud University, researchers supporting Project (number RSP2023R110), King Saud University, Riyadh, Saudi Arabia.
-
Data availability: No data is associated with this pubication.
References
1. Yao, J., Yang, M., Duan, Y. Chemistry, biology, and medicine of fluorescent nanomaterials and related systems: new insights into biosensing, bioimaging, genomics, diagnostics, and therapy. Chem. Rev. 2014, 114, 6130–6178; https://doi.org/10.1021/cr200359p.Search in Google Scholar PubMed
2. Khanna, V. K. Existing and emerging detection technologies for DNA (Deoxyribonucleic Acid) finger printing, sequencing, bio- and analytical chips: a multidisciplinary development unifying molecular biology, chemical and electronics engineering. Biotechnol. Adv. 2007, 25, 85–98; https://doi.org/10.1016/j.biotechadv.2006.10.003.Search in Google Scholar PubMed
3. Peacocke, A., Skerrett, J. H. The interaction of aminoacridines with nucleic acids. Transactions of the Faraday Society 1956, 52, 261–279; https://doi.org/10.1039/tf9565200261.Search in Google Scholar
4. Qais, F. A., Abdullah, K., Alam, M. M., Naseem, I., Ahmad, I. Interaction of capsaicin with calf thymus DNA: a multi-spectroscopic and molecular modelling study. Int. J. Biol. Macromol. 2017, 97, 392–402; https://doi.org/10.1016/j.ijbiomac.2017.01.022.Search in Google Scholar PubMed
5. Darzynkiewicz, Z., Huang, X., Zhao, H. Analysis of cellular DNA content by flow cytometry. Curr. Protoc. Im. 2017, 119, 5.7.1–5.7.20; https://doi.org/10.1002/cpcy.28.Search in Google Scholar PubMed
6. Vardevanyan, P., Antonyan, A., Sahakyan, V. Peculiarities of acridine orange binding with DNA. Ajastan Kensabanakan Handes 2016, 68.Search in Google Scholar
7. El-Garawani, I. M., Hassab El-Nabi, S. Increased sensitivity of apoptosis detection using direct DNA staining method and integration of acridine orange as an alternative safer fluorescent dye in agarose gel electrophoresis and micronucleus test. Cjpas 2016, 10, 3865–3871.Search in Google Scholar
8. de Carvalho Bertozo, L., Tutone, M., Pastrello, B., da Silva-Filho, L. C., Culletta, G., Almerico, A. M., Ximenes, V. F. Aminoquinolines: fluorescent sensors to DNA–A minor groove probe. Experimental and in silico studies. J. Photochem. Photobiol. Chem., 2023, 114944; https://doi.org/10.1016/j.jphotochem.2023.114944.Search in Google Scholar
9. Dareini, M., Tehranizadeh, Z. A., Marjani, N., Taheri, R., Aslani-Firoozabadi, S., Talebi, A., Eidgahi, N. N., Saberi, M. R., Chamani, J. A novel view of the separate and simultaneous binding effects of docetaxel and anastrozole with calf thymus DNA: experimental and in silico approaches. Spectrochim. Acta Mol. Biomol. Spectrosc. 2020, 228, 117528; https://doi.org/10.1016/j.saa.2019.117528.Search in Google Scholar PubMed
10. Yasmeen, S., Qais, F. A., Rana, M., Islam, A. Binding and thermodynamic study of thalidomide with calf thymus DNA: spectroscopic and computational approaches. Int. J. Biol. Macromol. 2022, 207, 644–655; https://doi.org/10.1016/j.ijbiomac.2022.03.036.Search in Google Scholar PubMed
11. Liang, C., Chen, J., Li, M., Ge, Z., Fan, C., Shen, J. Probing the self-assembly process of amphiphilic tetrahedral DNA frameworks. Chem. Commun. 2022, 58, 8352–8355; https://doi.org/10.1039/d2cc03451d.Search in Google Scholar PubMed
12. Lin, X., Li, C., Meng, X., Yu, W., Duan, N., Wang, Z., Wu, S. CRISPR-Cas12a-mediated luminescence resonance energy transfer aptasensing platform for deoxynivalenol using gold nanoparticle-decorated Ti3C2Tx MXene as the enhanced quencher. J. Hazard. Mater. 2022, 433, 128750; https://doi.org/10.1016/j.jhazmat.2022.128750.Search in Google Scholar PubMed
13. Gautam, D., Pandey, S., Chen, J. Effect of flow rate and ionic strength on the stabilities of YOYO-1 and YO-PRO-1 intercalated in DNA molecules. J. Phys. Chem. B 2023, 127, 2450–2456; https://doi.org/10.1021/acs.jpcb.3c00777.Search in Google Scholar PubMed PubMed Central
14. Song, Y., Niederschulte, J., Bales, K. N., Bashkin, J. K., Dupureur, C. M. Thermodynamics and site stoichiometry of DNA binding by a large antiviral hairpin polyamide. Biochimie 2019, 157, 149–157; https://doi.org/10.1016/j.biochi.2018.11.013.Search in Google Scholar PubMed
15. Sapia, R. J., Campbell, C., Reed, A. J., Tsvetkov, V. B., Gerasimova, Y. V. Interaction of GelRed™ with single-stranded DNA oligonucleotides: preferential binding to thymine-rich sequences. Dyes Pigm. 2021, 188, 109209; https://doi.org/10.1016/j.dyepig.2021.109209.Search in Google Scholar
16. Karg, B., Funke, A., Ficht, A., Sievers‐Engler, A., Lämmerhofer, M., Weisz, K. Molecular recognition and visual detection of G‐quadruplexes by a dicarbocyanine dye. Chem. A Eur. J. 2015, 21, 13802–13811; https://doi.org/10.1002/chem.201502118.Search in Google Scholar PubMed
17. Akram, M., Lal, H. Exploring the binding mode of ester-based cationic gemini surfactants with calf thymus DNA: a detailed physicochemical, spectroscopic and theoretical study. Bioorg. Chem. 2022, 119, 105555; https://doi.org/10.1016/j.bioorg.2021.105555.Search in Google Scholar PubMed
18. Mazzoli, A., Spalletti, A., Carlotti, B., Emiliani, C., Fortuna, C. G., Urbanelli, L., Tarpani, L., Germani, R. Spectroscopic investigation of interactions of new potential anticancer drugs with DNA and non-ionic micelles. J. Phys. Chem. B 2015, 119, 1483–1495; https://doi.org/10.1021/jp510360u.Search in Google Scholar PubMed
19. Muhammad, M. T., Khan, M. N. Study of electrolytic effect on the interaction between anionic surfactant and methylene blue using spectrophotometric and conductivity methods. J. Mol. Liq. 2017, 234, 309–314; https://doi.org/10.1016/j.molliq.2017.03.102.Search in Google Scholar
20. Kasyanenko, N., Unksov, I., Bakulev, V., Santer, S. DNA interaction with head-to-tail associates of cationic surfactants prevents formation of compact particles. Molecules 2018, 23, 1576; https://doi.org/10.3390/molecules23071576.Search in Google Scholar PubMed PubMed Central
21. Liu, B., Liu, J. Accelerating peroxidase mimicking nanozymes using DNA. Nanoscale 2015, 7, 13831–13835; https://doi.org/10.1039/c5nr04176g.Search in Google Scholar PubMed
22. Hannewald, N., Winterwerber, P., Zechel, S., Ng, D. Y., Hager, M. D., Weil, T., Schubert, U. S. DNA origami meets polymers: a powerful tool for the design of defined nanostructures. Angew. Chem. Int. Ed. 2021, 60, 6218–6229; https://doi.org/10.1002/anie.202005907.Search in Google Scholar PubMed PubMed Central
23. Sarwar, T., Rehman, S. U., Husain, M. A., Ishqi, H. M., Tabish, M. Interaction of coumarin with calf thymus DNA: deciphering the mode of binding by in vitro studies. Int. J. Biol. Macromol. 2015, 73, 9–16; https://doi.org/10.1016/j.ijbiomac.2014.10.017.Search in Google Scholar PubMed
24. Jana, J., M. Ganguly, T. Pal, Enlightening surface plasmon resonance effect of metal nanoparticles for practical spectroscopic application. RSC Adv. 2016, 6, 86174-86211, https://doi.org/10.1039/c6ra14173k.Search in Google Scholar
25. Oh, T. Extended Fluorescent Resonant Energy Transfer in DNA Constructs; University of California: San Diego, 2016.Search in Google Scholar
26. Buurma, N. J., Haq, I. Calorimetric and spectroscopic studies of Hoechst 33258: self-association and binding to non-cognate DNA. J. Mol. Biol. 2008, 381, 607–621; https://doi.org/10.1016/j.jmb.2008.05.073.Search in Google Scholar PubMed
27. Janovec, L., Kožurková, M., Sabolová, D., Ungvarský, J., Paulíková, H., Plšíková, J., Vantová, Z., Imrich, J. Cytotoxic 3, 6-bis ((imidazolidinone) imino) acridines: synthesis, DNA binding and molecular modeling. Biorg. Med. Chem. 2011, 19, 1790–1801; https://doi.org/10.1016/j.bmc.2011.01.012.Search in Google Scholar PubMed
28. Zipper, H., Brunner, H., Bernhagen, J., Vitzthum, F. Investigations on DNA intercalation and surface binding by SYBR Green I, its structure determination and methodological implications. Nucleic Acids Res. 2004, 32, e103; https://doi.org/10.1093/nar/gnh101.Search in Google Scholar PubMed PubMed Central
29. Moreira, B. G., You, Y., Behlke, M. A., Owczarzy, R. Effects of fluorescent dyes, quenchers, and dangling ends on DNA duplex stability. Biochem. Biophys. Res. Commun. 2005, 327, 473–484; https://doi.org/10.1016/j.bbrc.2004.12.035.Search in Google Scholar PubMed
30. Rohs, R., Sklenar, H. Methylene blue binding to DNA with alternating AT base sequence: minor groove binding is favored over intercalation. J. Biomol. Struct. Dyn. 2004, 21, 699–711; https://doi.org/10.1080/07391102.2004.10506960.Search in Google Scholar PubMed
31. Rohs, R., Sklenar, H., Lavery, R., Röder, B. Methylene blue binding to DNA with alternating GC base sequence: a modeling study. J. Am. Chem. Soc. 2000, 122, 2860–2866; https://doi.org/10.1021/ja992966k.Search in Google Scholar
32. Terenzi, A., Gattuso, H., Spinello, A., Keppler, B. K., Chipot, C., Dehez, F., Barone, G., Monari, A. Targeting G-Quadruplexes with organic dyes: chelerythrine–DNA binding elucidated by combining molecular modeling and optical spectroscopy. Antioxidants 2019, 8, 472; https://doi.org/10.3390/antiox8100472.Search in Google Scholar PubMed PubMed Central
33. Kumar, K. V., Ramamurthi, V., Sivanesan, S. Modeling the mechanism involved during the sorption of methylene blue onto fly ash. J. Colloid Interface Sci. 2005, 284, 14–21; https://doi.org/10.1016/j.jcis.2004.09.063.Search in Google Scholar PubMed
34. Karim, Z., Mathew, A. P., Grahn, M., Mouzon, J., Oksman, K. Nanoporous membranes with cellulose nanocrystals as functional entity in chitosan: removal of dyes from water. Carbohydr. Polym. 2014, 112, 668–676; https://doi.org/10.1016/j.carbpol.2014.06.048.Search in Google Scholar PubMed
35. Tardivo, J. P., Del Giglio, A., De Oliveira, C. S., Gabrielli, D. S., Junqueira, H. C., Tada, D. B., Severino, D., de Fátima Turchiello, R., Baptista, M. S. Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications. Photodiagnosis Photodyn. Ther. 2005, 2, 175–191; https://doi.org/10.1016/s1572-1000(05)00097-9.Search in Google Scholar PubMed
36. Yang, D., Campolongo, M. J., Nhi Tran, T. N., Ruiz, R. C., Kahn, J. S., Luo, D. Novel DNA materials and their applications. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2010, 2, 648–669; https://doi.org/10.1002/wnan.111.Search in Google Scholar PubMed PubMed Central
37. Gao, C., Liu, S.-y., Zhang, X., Liu, Y.-k., Liu, Z.-e. Two-photon fluorescence and fluorescence imaging of two styryl heterocyclic dyes combined with DNA. Spectrochim. Acta Mol. Biomol. Spectrosc. 2016, 156, 1–8; https://doi.org/10.1016/j.saa.2015.11.014.Search in Google Scholar PubMed
38. Doğan, M., Abak, H., Alkan, M. Adsorption of methylene blue onto hazelnut shell: kinetics, mechanism and activation parameters. J. Hazard. Mater. 2009, 164, 172–181; https://doi.org/10.1016/j.jhazmat.2008.07.155.Search in Google Scholar PubMed
39. Khan, S., Zahoor, M., Rahman, M. U., Gul, Z. Cocrystals: basic concepts, properties and formation strategies. Z. Phys. Chem. 2023, 237, 273–332; https://doi.org/10.1515/zpch-2022-0175.Search in Google Scholar
40. Cong, W., Chen, M., Zhu, Z., Liu, Z., Nan, J., Ye, W., Ni, M., Zhao, T., Jin, L. A shortcut organic dye-based staining method for the detection of DNA both in agarose and polyacrylamide gel electrophoresis. Analyst 2013, 138, 1187–1194; https://doi.org/10.1039/c2an36079a.Search in Google Scholar PubMed
41. Liu, B., Jin, S.-F., Li, H.-C., Sun, X.-Y., Yan, S.-Q., Deng, S.-J., Zhao, P. The Bio-safety concerns of three domestic temporary hair dye molecules: fuchsin basic, Victoria blue B and basic red 2. Molecules 2019, 24, 1744; https://doi.org/10.3390/molecules24091744.Search in Google Scholar PubMed PubMed Central
42. Mason, M. G., Botella, J. R. A simple, robust and equipment-free DNA amplification readout in less than 30 seconds. RSC Adv. 2019, 9, 24440–24450; https://doi.org/10.1039/c9ra04725e.Search in Google Scholar PubMed PubMed Central
43. Turkova, J. Oriented immobilization of biologically active proteins as a tool for revealing protein interactions and function. J. Chromatogr. B Biomed. Sci. Appl. 1999, 722, 11–31; https://doi.org/10.1016/s0378-4347(98)00434-4.Search in Google Scholar PubMed
44. Barz, T., Ackermann, K., Pyerin, W. A positive control for the green fluorescent protein-based one-hybrid system. Anal. Biochem. 2002, 304, 117–121; https://doi.org/10.1006/abio.2002.5618.Search in Google Scholar PubMed
45. Mirzabekov, A., Bavykin, S., Belyavsky, A., Karpov, V., Preobrazhenskaya, O., Shick, V., Ebralidse, K. [20] Mapping DNA–protein interactions by cross-linking. In Methods Enzymol; Elsevier, 1989; pp. 386–408.10.1016/0076-6879(89)70058-6Search in Google Scholar PubMed
46. O’Steen, M. R., Kolpashchikov, D. M. A self-assembling split aptamer multiplex assay for SARS-COVID19 and miniaturization of a malachite green DNA-based aptamer. Sensor. Actuator. Rep. 2022, 4, 100125; https://doi.org/10.1016/j.snr.2022.100125.Search in Google Scholar PubMed PubMed Central
47. Gureev, A. P., Shaforostova, E. A., Laver, D. A., Khorolskaya, V. G., Syromyatnikov, M. Y., Popov, V. N. Methylene blue elicits non-genotoxic H 2 O 2 production and protects brain mitochondria from rotenone toxicity. J. Appl. Biomed. 2019, 17; https://doi.org/10.32725/jab.2019.008.Search in Google Scholar PubMed
48. Prates, R. A., Yamada, A. M.Jr, Suzuki, L. C., Hashimoto, M. C. E., Cai, S., Gouw-Soares, S., Gomes, L., Ribeiro, M. S. Bactericidal effect of malachite green and red laser on Actinobacillus actinomycetemcomitans. J. Photochem. Photobiol. B: Biol. 2007, 86, 70–76; https://doi.org/10.1016/j.jphotobiol.2006.07.010.Search in Google Scholar PubMed
49. Khan, S., Rahman, F. U., Zahoor, M., Haq, A. U., Shah, A. B., Rahman, M. U., Rahman, H. U. The DNA threat probing of some chromophores using UV/VIS spectroscopy. World J. Biology and Biotechnology 2023, 8, 19–22; https://doi.org/10.33865/wjb.008.02.0962.Search in Google Scholar
50. Naik, R., Seetharamappa, J. In vitro and computational approaches to untangle the binding mechanism of galangin with calf thymus DNA. J. Fluoresc. 2023, 33, 13–24; https://doi.org/10.1007/s10895-022-03033-x.Search in Google Scholar PubMed
51. Zhang, G., Hu, X., Zhao, N., Li, W., He, L. Studies on the interaction of aminocarb with calf thymus DNA by spectroscopic methods. Pestic. Biochem. Physiol. 2010, 98, 206–212; https://doi.org/10.1016/j.pestbp.2010.06.008.Search in Google Scholar
52. Xu, B., Jiao, K., Sun, W., Zhang, X. Recognition and determination of DNA using victoria blue b as electrochemical probe. Int. J. Electrochem. Sci. 2007, 2, 406–417; https://doi.org/10.1016/s1452-3981(23)17082-9.Search in Google Scholar
53. Lourenço, T. C., de Mello, L. R., Icimoto, M. Y., Bicev, R. N., Hamley, I. W., Castelletto, V., Nakaie, C. R., da Silva, E. R. DNA-templated self-assembly of bradykinin into bioactive nanofibrils. Soft Matter 2023, 19, 4869–4879; https://doi.org/10.1039/d3sm00431g.Search in Google Scholar PubMed
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review Article
- Potential of Gd-based nanocomposites (GdFeO3) as photocatalysts for the degradation of organic pollutants: a review
- Original Papers
- Bimetallic nanoparticles preparation from metallic organic frameworks, characterization and its applications in reclamation of textile effluents
- Chitosan-coated magnetic nanorods and nanospheres: physicochemical characterizations and potential as methotrexate carriers for targeted drug delivery
- Green synthesis of copper nanoparticles from agro-waste garlic husk
- Noncovalent interactions in N-methylurea crystalline hydrates
- Upcycling of the industrial waste as a sustainable source of axenic fungal strain (Aspergillus oryzae) for scale up enzymatic production with kinetic analysis and Box–Behnken design application
- Kinetics and outer sphere electron transfer of some metallosurfactants by Fe(CN)64− in microheterogenous medium: a detailed thermodynamic approach
- Bonding and noncovalent interactions effects in 2,6-dimethylpiperazine-1,4-diium oxalate oxalic acid: DFT calculation, topological analysis, NMR and molecular docking studies
- Effect of ionic strength on DNA–dye interactions of Victoria blue B and methylene green using UV–visible spectroscopy
- Synthesis, X-ray diffraction, DFT, and molecular docking studies of isonicotinohydrazide derivative
Articles in the same Issue
- Frontmatter
- Review Article
- Potential of Gd-based nanocomposites (GdFeO3) as photocatalysts for the degradation of organic pollutants: a review
- Original Papers
- Bimetallic nanoparticles preparation from metallic organic frameworks, characterization and its applications in reclamation of textile effluents
- Chitosan-coated magnetic nanorods and nanospheres: physicochemical characterizations and potential as methotrexate carriers for targeted drug delivery
- Green synthesis of copper nanoparticles from agro-waste garlic husk
- Noncovalent interactions in N-methylurea crystalline hydrates
- Upcycling of the industrial waste as a sustainable source of axenic fungal strain (Aspergillus oryzae) for scale up enzymatic production with kinetic analysis and Box–Behnken design application
- Kinetics and outer sphere electron transfer of some metallosurfactants by Fe(CN)64− in microheterogenous medium: a detailed thermodynamic approach
- Bonding and noncovalent interactions effects in 2,6-dimethylpiperazine-1,4-diium oxalate oxalic acid: DFT calculation, topological analysis, NMR and molecular docking studies
- Effect of ionic strength on DNA–dye interactions of Victoria blue B and methylene green using UV–visible spectroscopy
- Synthesis, X-ray diffraction, DFT, and molecular docking studies of isonicotinohydrazide derivative