Home Physical Sciences Anticorrosion studies of 5-acetyl-4-(3-methoxyphenyl)-6-methyl-1-phenyl-3,4-dihydropyrimidin-2(1H)-one: approach from experimental, DFT studies, and MD simulation
Article
Licensed
Unlicensed Requires Authentication

Anticorrosion studies of 5-acetyl-4-(3-methoxyphenyl)-6-methyl-1-phenyl-3,4-dihydropyrimidin-2(1H)-one: approach from experimental, DFT studies, and MD simulation

  • Arifa B. Farzana , Mashood F. M. Ahamed , Ambika Sundaravadivelu , Terkumbur E. Gber EMAIL logo , Samuel E. Odey , Michael O. Odey , Aniekan E. Owen and Hitler Louis EMAIL logo
Published/Copyright: December 6, 2023

Abstract

The effectiveness of 5-acetyl-4-(3-methoxyphenyl)-6-methyl-1-phenyl-3,4-dihydropyrimidin-2(1H)-one as a corrosion inhibitor for mild steel in acidic conditions was investigated herein through the experimental and theoretical approach. Experimental results demonstrated that this compound acts as a reliable corrosion inhibitor (η %) for mild steel in acidic environments, with its inhibition efficiency increasing as the inhibitor concentration rises. Adsorption behavior on the mild steel surface followed Langmuir and Temkin adsorption isotherms. Electrochemical polarization tests indicated that the compound exhibited a mixed corrosion type, and impedance spectroscopy revealed an increase in charge transfer resistance with higher inhibitor concentrations. Examination of the mild steel surface using SEM and Atomic Force Microscopy (AFM) confirmed the formation of a protective film. Wettability characteristics were assessed using the contact angle method. Frontier molecular orbital analysis revealed the HOMO and LUMO values for both the neutral and protonated forms of the compound. At 289 °C, the interaction energy for adsorption was found to be approximately −146.3006 kJ/mol for the neutral system and −135.8122 kJ/mol for the protonated system, while at 318 °C, the corresponding values were −140.6106 kJ/mol and −147.6022 kJ/mol. These findings collectively suggest the potential industrial utility of the investigated inhibitor as an effective corrosion inhibitor.


Corresponding author: Terkumbur E. Gber, Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria and Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria, E-mail: ; and Hitler Louis, Computational and Bio-Simulation Research Group, University of Calabar, Calabar, Nigeria; Department of Pure and Applied Chemistry, University of Calabar, Calabar, Nigeria; and Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences Saveetha University, Chennai, India, E-mail:

Acknowledgments

The authors would like to acknowledge the center for high performance computing (CHPC), at the University of Johannesburg, South Africa for providing computational resources for this research project.

  1. Research ethics: Not applicable.

  2. Author contributions: Arifa B. Farzana: Project conceptualization, design, and supervision Mashood F. M. Ahamed and Ambika Sundaravadivelu: Writing, results extraction, analysis, and manuscript first draft. Writing editing and proofreading Terkumbur E. Gber: and Samuel E. Odey: Manuscript revision, review, and proofreading and Michael O. Odey and Aniekan E. Owen: Resources, review, and editing Hitler Louis: Validation, methodology, and investigation.

  3. Competing interests: All authors declare zero financial or inter-personal conflict of interest that could have influenced the research work or results reported in this research paper.

  4. Research funding: This research did not receive founding from either government or non governmental organization.

  5. Data availability: All data are contained within the manuscript and manuscript supporting information.

References

1. Ukoba, O. K., Oke, P. K., Ibegbulam, M. C. Corrosion behaviour of ductile iron in different environment. J. Sci. Technol. 2012, 2, 618–612.Search in Google Scholar

2. Chen, Y., Hong, T., Gopal, M., Jepson, W. P. EIS studies of a corrosion inhibitor behavior under multiphase flow conditions. Corros. Sci. 2000, 42, 979–990; https://doi.org/10.1016/s0010-938x(99)00127-4.Search in Google Scholar

3. Riggs, O. L.Jr, Hurd, R. M. Temperature coefficient of corrosion inhibition. Corrosion 1967, 23, 252–260; https://doi.org/10.5006/0010-9312-23.8.252.Search in Google Scholar

4. Chigondo, M., Chigondo, F. Recent natural corrosion inhibitors for mild steel: an overview. J. Chem. 2016; https://doi.org/10.1155/2016/6208937.Search in Google Scholar

5. Abioye, O. P., Musa, A. J., Loto, C. A., Fayomi, O. I., Gaiya, G. P. Evaluation of corrosive behavior of zinc composite coating on mild steel for marine applications. J. Phys. Conf. Ser. 2019, 1378, 042051.10.1088/1742-6596/1378/4/042051Search in Google Scholar

6. Dwivedi, D., Lepková, K., Becker, T. Carbon steel corrosion: a review of key surface properties and characterization methods. RSC Adv. 2017, 7, 4580–4610; https://doi.org/10.1039/c6ra25094g.Search in Google Scholar

7. Kazachenko, A. S., Issaoui, N., Sagaama, A., Malyar, Y. N., Al-Dossary, O., Bousiakou, L. G., Miroshnokova, A. V., Xiang, Z. Hydrogen bonds interactions in biuret-water clusters: FTIR, X-ray diffraction, AIM, DFT, RDG, ELF, NLO analysis. J. King Saud Univ. Sci. 2022, 34, 102350; https://doi.org/10.1016/j.jksus.2022.102350.Search in Google Scholar

8. Kazachenko, A. S., Malyar, Y. N., Vasilyeva, N. Y., Borovkova, V. S., Issaoui, N. Optimization of Guar Gum Galactomannan Sulfation Process with Sulfamic Acid. Biomass Convers. Biorefin. 2021, 1–10; https://doi.org/10.1007/s13399-021-01895-y.Search in Google Scholar

9. Zhang, H., Zuo, X., Sun, B., Wei, B., Fu, J., Xiao, X. Fuzzy-PID-based atmosphere packaging gas distribution system for fresh food. Appl. Sci. 2023, 13, 2674; https://doi.org/10.3390/app13042674.Search in Google Scholar

10. Jumabaev, A., Holikulov, U., Hushvaktov, H., Issaoui, N., Absanov, A. Intermolecular interactions in ethanol solution of OABA: Raman, FTIR, DFT, M062X, MEP, NBO, FMO, AIM, NCI, RDG analysis. J. Mol. Liq. 2023, 377, 121552; https://doi.org/10.1016/j.molliq.2023.121552.Search in Google Scholar

11. Musa, A. Y., Kadhum, A. A. H., Mohamad, A. B., Daud, A. R., Takriff, M. S., Kamarudin, S. K. Corros. Sci. 2009, 51, 2393–2399; https://doi.org/10.1016/j.corsci.2009.06.024.Search in Google Scholar

12. Al-Amiery, A. A., Kadhum, A. A. H., Alobaidy, A. H. M., Mohamad, A. B., Hoon, P. S. Novel corrosion inhibitor for mild steel in HCl. Materials 2014, 7, 662–672; https://doi.org/10.3390/ma7020662.Search in Google Scholar PubMed PubMed Central

13. Noureddine, O., Issaoui, N., Gatfaoui, S., Al-Dossary, O., Marouani, H. Quantum chemical calculations, spectroscopic properties and molecular docking studies of a novel piperazine derivative. J. King Saud Univ. Sci. 2021, 33, 101283; https://doi.org/10.1016/j.jksus.2020.101283.Search in Google Scholar

14. Jumabaev, A., Holikulov, U., Hushvaktov, H., Issaoui, N., Absanov, A. Intermolecular interactions in ethanol solution of OABA: Raman, FTIR, DFT, M062X, MEP, NBO, FMO, AIM, NCI, RDG analysis. J. Mol. Liq. 2023, 377, 121552; https://doi.org/10.1016/j.molliq.2023.121552.Search in Google Scholar

15. Donnelly, B., Downie, T. C., Grzeskowiak, R., Hamburg, H. R., Short, D. The effect of electronic delocalization in organic groups R in substituted thiocarbamoyl RCSNH2 and related compounds on inhibition efficiency. Corros. Sci. 1978, 18, 109–116; https://doi.org/10.1016/s0010-938x(78)80081-x.Search in Google Scholar

16. Khaled, K. F. Electrochemical investigation and modeling of corrosion inhibition of aluminum in molar nitric acid using some sulphur-containing amines. Corros. Sci. 2010, 52, 2905–2916; https://doi.org/10.1016/j.corsci.2010.05.001.Search in Google Scholar

17. Muthu, S., Ramachandran, G. Spectroscopic studies (FTIR, FT-Raman and UV–Visible), normal coordinate analysis, NBO analysis, first order hyper polarizability, HOMO and LUMO analysis of (1R)-N-(Prop-2-yn-1-yl)-2,3-dihydro-1H-inden-1-amine molecule by ab initio HF and density functional methods. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2014, 121, 394–403; https://doi.org/10.1016/j.saa.2013.10.093.Search in Google Scholar PubMed

18. Lashkari, M., Arshadi, M. R. DFT studies of pyridine corrosion inhibitors in electrical double layer: solvent, substrate, and electric field effects. Chem. Phys. 2004, 299, 131–137; https://doi.org/10.1016/j.chemphys.2003.12.019.Search in Google Scholar

19. Verma, D. K., Kazi, M., Alqahtani, M. S., Syed, R., Berdimurodov, E., Kaya, S., Salim, R., Asatkar, A., Haldhar, R. N-hydroxybenzothioamide derivatives as green and efficient corrosion inhibitors for mild steel: experimental, DFT and MC simulation approach. J. Mol. Struct. 2021, 1241, 130648; https://doi.org/10.1016/j.molstruc.2021.130648.Search in Google Scholar

20. Saha, S. K., Hens, A., RoyChowdhury, A., Lohar, A. K., Murmu, N. C., Banerjee, P. Molecular dynamics and density functional theory study on corrosion inhibitory action of three substituted pyrazine derivatives on steel surface. Can. Chem. Trans. 2014, 2, 489–503.10.13179/canchemtrans.2014.02.04.0137Search in Google Scholar

21. Thirunavukkarasu, M., Balaji, G., Muthu, S., Raajaraman, B. R., Ramesh, P. Computational spectroscopic investigations on structural validation with IR and Raman experimental evidence, projection of ultraviolet-visible excitations, natural bond orbital interpretations, and molecular docking studies under the biological investigation on N-benzyloxycarbonyl-L-aspartic acid 1-benzyl ester. Chem. Data Collect. 2021, 31, 100622; https://doi.org/10.1016/j.cdc.2020.100622.Search in Google Scholar

22. Ouici, H., Tourabi, M., Benali, O., Selles, C., Jama, C., Zarrouk, A., Bentiss, F. Adsorption and corrosion inhibition properties of 5-amino 1,3,4-thiadiazole-2-thiol on the mild steel in hydrochloric acid medium: thermodynamic, surface and electrochemical studies. J. Electroanal. Chem. 2017, 803, 125–134; https://doi.org/10.1016/j.jelechem.2017.09.018.Search in Google Scholar

23. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Petersson, G. A., Nakatsuji, H., Li, X., Caricato, M., Marenich, A. V., Bloino, J., Janesko, B. G., Gomperts, R., Mennucci, B., Hratchian, H. P., Ortiz, J. V., Izmaylov, A. F., Sonnenberg, J. L., Williams-Young, D., Ding, F., Lipparini, F., Egidi, F., Goings, J., Peng, B., Petrone, A., Henderson, T., Ranasinghe, D., Zakrzewski, V. G., Gao, J., Rega, N., Zheng, G., Liang, W., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Throssell, K., Montgomery, J. A.Jr., Peralta, J. E., Ogliaro, F., Bearpark, M. J., Heyd, J. J., Brothers, E. N., Kudin, K. N., Staroverov, V. N., Keith, T. A., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A. P., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Millam, J. M., Klene, M., Adamo, C., Cammi, R., Ochterski, J. W., Martin, R. L., Morokuma, K., Farkas, O., Foresman, J. B., Fox, D. J. Wallingford CT: Gaussian, Inc., 2016.Search in Google Scholar

24. Dennington, R., Keith, T. A., Millam, J. M. GaussView 6.0. 16. Shawnee Mission, KS, USA: Semichem Inc., 2016. HyperChem, T. HyperChem 8.07, HyperChem Professional Program. Gainesville, Hypercube; 2001.Search in Google Scholar

25. Wang, X., Zhang, P., Xu, Q., Guo, C., Zhang, D., Lu, C., Liu, R. Enantioselective synthesis of nitrogen-nitrogen biaryl atropisomers via copper-catalyzed friedel-crafts alkylation reaction. J. Am. Chem. Soc. 2021, 143, 15005–15010; https://doi.org/10.1021/jacs.1c07741.Search in Google Scholar PubMed

26. Oguzie, E. E., Njoku, D. I., Chidebere, M. A., Ogukwe, C. E., Onuoha, G. N., Oguzie, K. L., Ibisi, N. Characterization and experimental and computational assessment of Kola nitida extract for corrosion inhibiting efficacy. Ind. Eng. Chem. Res. 2014, 53, 5886–5894; https://doi.org/10.1021/ie404273f.Search in Google Scholar

27. Kasprzhitskii, A., Lazorenko, G., Nazdracheva, T., Yavna, V. Comparative computational study of l-amino acids as green corrosion inhibitors for mild steel. Computation 2020, 9, 1; https://doi.org/10.3390/computation9010001.Search in Google Scholar

28. Medimagh, M., Issaoui, N., Gatfaoui, S., Al-Dossary, O., Kazachenko, A. S., Marouani, H., Wojcik, M. J. Molecular modeling and biological activity analysis of new organic-inorganic hybrid: 2-(3,4-dihydroxyphenyl)ethanaminium nitrate. J. King Saud Univ. Sci. 2021, 33, 101616; https://doi.org/10.1016/j.jksus.2021.101616.Search in Google Scholar

29. Wang, S., Hou, K., Heinz, H. Accurate and compatible force fields for molecular oxygen, nitrogen, and hydrogen to simulate gases, electrolytes, and heterogeneous interfaces. J. Chem. Theory Comput. 2021, 17, 5198–5213; https://doi.org/10.1021/acs.jctc.0c01132.Search in Google Scholar PubMed

30. Amul, B., Muthu, S., Raja, M., Sevvanthi, S. Spectral, DFT and molecular docking investigations on Etodolac. J. Mol. Struct. 2019, 1195, 747–761; https://doi.org/10.1016/j.molstruc.2019.06.047.Search in Google Scholar

31. Ogunwale, G. J., Louis, H., Gber, T. E., Adeyinka, A. S. Modeling of pristine, Ir-and Au-decorated C60 fullerenes as sensors for detection of hydroxyurea and nitrosourea drugs. J. Environ. Chem. Eng. 2022, 10, 108802; https://doi.org/10.1016/j.jece.2022.108802.Search in Google Scholar

32. George, J., Prasana, J. C., Muthu, S., Kuruvilla, T. K., Sevanthi, S., Saji, R. S. Spectroscopic (FT-IR, FT Raman) and quantum mechanical study on N-(2, 6-dimethylphenyl)-2-{4-[2-hydroxy-3-(2-methoxyphenoxy) propyl] piperazin-1-yl} acetamide. J. Mol. Struct. 2018, 1171, 268–278; https://doi.org/10.1016/j.molstruc.2018.05.106.Search in Google Scholar

33. Chen, D., Wang, Q., Li, Y., Li, Y., Zhou, H., Fan, Y. A general linear free energy relationship for predicting partition coefficients of neutral organic compounds. Chemosphere 2020, 247, 125869; https://doi.org/10.1016/j.chemosphere.2020.125869.Search in Google Scholar PubMed

34. Gatfaoui, S., Issaoui, N., Roisnel, T., Marouani, H. Synthesis, experimental and computational study of a non-centrosymmetric material 3-methylbenzylammonium trioxonitrate. J. Mol. Struct. 2021, 1225, 129132; https://doi.org/10.1016/j.molstruc.2020.129132.Search in Google Scholar

35. Xu, J., Yang, Z., Wang, Z., Li, J., Zhang, X. Flexible sensing enabled packaging performance optimization system (FS-PPOS) for lamb loss reduction control in E-commerce supply chain. Food Control 2023, 145, 109394. https://doi.org/10.1016/j.foodcont.2022.109394.Search in Google Scholar

36. Louis, H., Isang, B. B., Unimuke, T. O., Gber, T. E., Amodu, I. O., Ikeuba, A. I., Adeyinka, A. S. Modeling of Al12N12, Mg12O12, Ca12O12, and C23N nanostructured as potential anode materials for sodium-ion battery. J. Solid State Electrochem. 2022, 1–13; https://doi.org/10.1007/s10008-022-05300-0.Search in Google Scholar

37. Louis, H., Gber, T. E., Charlie, D. E., Egemonye, T. C., Orosun, M. M. Detection of hydroxymethanesulfonate (HMS) by transition metal-anchored fullerene nanoclusters. J. Iran. Chem. Soc. 2022, 1–17; https://doi.org/10.1007/s13738-022-02707-4.Search in Google Scholar

38. Bharathy, G., Prasana, J. C., Muthu, S., Irfan, A., Asif, F. B., Saral, A., Aayisha, S., Niranjana devi, R. Evaluation of electronic and biological interactions between N-[4-(ethylsulfamoyl) phenyl] acetamide and some polar liquids (IEFPCM solvation model) with Fukui function and molecular docking analysis. J. Mol. Liq. 2021, 340, 117271; https://doi.org/10.1016/j.molliq.2021.117271.Search in Google Scholar

39. Ofem, M. I., Louis, H., Agwupuye, J. A., Ameuru, U. S., Apebende, G. C., Gber, T. E., Odey, J. O., Musa, N., Ayi, A. A. Synthesis, spectral characterization, and theoretical investigation of the photovoltaic properties of ((E)-6-(4-(dimethylamino)phenyl)diazenyl)-2-octyl-benzoisoquinoline-1,3-dione. BMC Chem. 2022, 16, 1–15; https://doi.org/10.1186/s13065-022-00896-w.Search in Google Scholar PubMed PubMed Central

40. Mohammadi, M. D., Abbas, F., Louis, H., Afahanam, L. E., Gber, T. E. Intermolecular interactions between nitrosourea and polyoxometalate compounds. ChemistrySelect 2022, 7, e202202535; https://doi.org/10.1002/slct.202202535.Search in Google Scholar

41. Rekik, N., Issaoui, N., Oujia, B., Wójcik, M. J. Theoretical IR spectral density of H-bond in liquid phase: combined effects of anharmonicities, Fermi resonances, direct and indirect relaxations. J. Mol. Liq. 2008, 141, 104–109; https://doi.org/10.1016/j.molliq.2007.10.009.Search in Google Scholar

42. Cui, G., Zhao, K., You, K., Gao, Z., Kakuchi, T., Feng, B., Duan, Q. Synthesis and characterization of phenylboronic acid-containing polymer for glucose-triggered drug delivery+. Sci. Technol. Adv. Mater. 2020, 21, 1–10; https://doi.org/10.1080/14686996.2019.1700394.Search in Google Scholar PubMed PubMed Central

43. Farzana, B. A., Banu, A. M., Ahamed, K. R. Andrographis echioides leaves extract as an eco-friendly corrosion inhibitor for mild steel in acid medium. Mater. Today: Proc. 2021, 47, 2080–2090; https://doi.org/10.1016/j.matpr.2021.04.478.Search in Google Scholar

44. Julie, M. M., Prabhu, T., Elamuruguporchelvi, E., Asif, F. B., Muthu, S., Irfan, A. Structural (monomer and dimer), wavefunctional, NCI analysis in aqueous phase, electronic and excited state properties in different solvent atmosphere of 3-{(E)-[(3,4-dichlorophenyl) imino] methyl}benzene-1,2-diol. J. Mol. Liq. 2021, 336, 116335; https://doi.org/10.1016/j.molliq.2021.116335.Search in Google Scholar

45. Chauhan, D. S., Ansari, K. R., Sorour, A. A., Quraishi, M. A., Lgaz, H., Salghi, R. Thiosemicarbazide and thiocarbohydrazide functionalized chitosan as ecofriendly corrosion inhibitors for carbon steel in hydrochloric acid solution. Int. J. Biol. Macromol. 2018, 107, 1747–1757; https://doi.org/10.1016/j.ijbiomac.2017.10.050.Search in Google Scholar PubMed

46. Gber, T. E., Agida, C. A., Louis, H., Ashishie, P. B., Oche, D., Ede, O. F., Agwamba, E. C., Adeyinka, A. S. Metals (B, Ni) encapsulation of graphene/PEDOT hybrid materials for gas sensing applications: a computational study. Talanta Open 2023, 8, 100252; https://doi.org/10.1016/j.talo.2023.100252.Search in Google Scholar

47. Sevvanthi, S., Muthu, S., Raja, M., Aayisha, S., Janani, S. PES, molecular structure, spectroscopic (FT-IR, FT-Raman), electronic (UV-Vis, HOMO-LUMO), quantum chemical and biological (docking) studies on a potent membrane permeable inhibitor: dibenzoxepine derivative. Heliyon 2020, 6; https://doi.org/10.1016/j.heliyon.2020.e04724.Search in Google Scholar PubMed PubMed Central

48. Thamarai, A., Vadamalar, R., Raja, M., Muthu, S., Narayana, B., Ramesh, P., Muhamed, R. R., Sevvanthi, S., Aayisha, S. Molecular structure interpretation, spectroscopic (FT-IR, FT-Raman), electronic solvation (UV-Vis, HOMO–LUMO and NLO) properties and biological evaluation of (2E)-3-(biphenyl-4-yl)-1-(4-bromophenyl) prop-2-en-1-one: experimental and computational modeling approach. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 2020, 226, 117609; https://doi.org/10.1016/j.saa.2019.117609.Search in Google Scholar PubMed

49. Musa, A. Y., Mohamad, A. B., Kadhum, A. A. H., Takriff, M. S. Corrosion inhibition of mild steel in 1.0 M HCl by amino compound: electrochemical and DFT studies. Metall. Mater. Trans. A 2012, 43, 3379–3386; https://doi.org/10.1007/s11661-012-1122-8.Search in Google Scholar

50. Timothy, R. A., Louis, H., Adindu, E. A., Gber, T. E., Agwamba, E. C., Offiong, O. E., Pembere, A. M. Elucidation of collagen amino acid interactions with metals (B, Ni) encapsulated graphene/PEDOT material: insight from DFT calculations and MD simulation. J. Mol. Liq. 2023, 390, 122950; https://doi.org/10.1016/j.molliq.2023.122950.Search in Google Scholar

51. Song, Z., Han, D., Yang, M., Huang, J., Shao, X., Li, H. Formic acid formation via direct hydration reaction (CO + H2O → HCOOH) on magnesia-silver composite. Appl. Surf. Sci. 2023, 607, 155067. https://doi.org/10.1016/j.apsusc.2022.155067.Search in Google Scholar

52. Arabzadeh, H., Shahidi, M., Foroughi, M. M. Electrodeposited polypyrrole coatings on mild steel: modeling the EIS data with a new equivalent circuit and the influence of scan rate and cycle number on the corrosion protection. J. Electroanal. Chem. 2017, 807, 162–173; https://doi.org/10.1016/j.jelechem.2017.11.019.Search in Google Scholar

53. Huang, W., Wang, X., Zhang, J., Xia, J., Zhang, X. Improvement of blueberry freshness prediction based on machine learning and multi-source sensing in the cold chain logistics. Food Control 2023, 145, 109496. https://doi.org/10.1016/j.foodcont.2022.109496.Search in Google Scholar

54. Odey, M. O., Antai, E. E., Adindu, E. A., Godfrey, O. C., Bassey, I. U., Nwaokolrie, F. O., Owolabi, A., Nkang, A., Gber, T. E., Edim, M. M., Louis, H. Unraveling the impact of polar solvation on the molecular geometry spectroscopy (FT-IR, UV, NMR), reactivity (ELF, NBO, HOMO-LUMO) and antiviral inhibitory potential of cissampeline by molecular docking approach. Chem. Phys. Impact 2023, 100346; https://doi.org/10.1016/j.chphi.2023.100346.Search in Google Scholar

55. Ramachandran, S., Tsai, B. L., Blanco, M., Chen, H., Tang, Y., Goddard, W. A. Self-assembled monolayer mechanism for corrosion inhibition of iron by imidazolines. Langmuir 1996, 12, 6419–6428; https://doi.org/10.1021/la960646y.Search in Google Scholar

56. Akpe, M. A., Louis, H., Gber, T. E., Chima, C. M., Brown, O. I., Adeyinka, A. S. Modeling of Cu, Ag, and Au-decorated Al12Se12 nanostructured as sensor materials for trapping of chlorpyrifos insecticide. Comput. Theor. Chem. 2023, 1226, 114218; https://doi.org/10.1016/j.comptc.2023.114218.Search in Google Scholar

57. Farzana, B. A., Banu, A. M., Ahamed, K. R. Andrographis echioides leaves extract as an eco-friendly corrosion inhibitor for mild steel in acid medium. Mater. Today: Proc. 2021, 47, 2080–2090; https://doi.org/10.1016/j.matpr.2021.04.478.Search in Google Scholar

58. Xiao, Y., Gong, W., Zhao, M., Zhang, M., Lu, N. Surface-engineered prussian blue nanozymes as artificial receptors for universal pattern recognition of metal ions and proteins. Sens. Actuators B Chem. 2023, 390, 134006. https://doi.org/10.1016/j.snb.2023.134006.Search in Google Scholar

59. Verma, C., Quraishi, M. A., Kluza, K., Makowska-Janusik, M., Olasunkanmi, L. O., Ebenso, E. E. Corrosion inhibition of mild steel in 1 M HCl by D-glucose derivatives of dihydropyrido [2, 3-d: 6, 5-d 0] dipyrimidine-2,4,6,8(1H,3H,5H,7H)-tetraone. Sci. Rep. 2017, 7, 44432; https://doi.org/10.1038/srep44432.Search in Google Scholar PubMed PubMed Central

60. Wang, Y., Zhai, W., Li, J., Liu, H., Li, C., Li, J. Friction behavior of biodegradable electrospun polyester nanofibrous membranes. Tribol. Int. 2023, 188, 108891; https://doi.org/10.1016/j.triboint.2023.108891.Search in Google Scholar

61. Asogwa, F. C., Louis, H., Gber, T. E., Isamura, B. K., Adalikwua, S. A. Electronic structure property and disposal efficiency of 2,2-dichloropropionic acid using metalloid (B, Si, and Ge) decorated gallium nano-clusters (Ga12X12 (X = N, O)). J. Comput. Biophys. Chem. 2023, 1–15; https://doi.org/10.1142/s2737416523500515.Search in Google Scholar

62. Farzana, B. A., Banu, A. M., Ahamed, K. R. Andrographis echioides leaves extract as an eco-friendly corrosion inhibitor for mild steel in acid medium. Mater. Today: Proc. 2021, 47, 2080–2090; https://doi.org/10.1016/j.matpr.2021.04.478.Search in Google Scholar

63. Belghiti, M. E., Echihi, S., Dafali, A., Karzazi, Y., Bakasse, M., Elalaoui-Elabdallaoui, H., Olasunkanmi, L., Ebenso, E., Tabyaoui, M. Computational simulation and statistical analysis on the relationship between corrosion inhibition efficiency and molecular structure of some hydrazine derivatives in phosphoric acid on mild steel surface. Appl. Surf. Sci. 2019, 491, 707–722; https://doi.org/10.1016/j.apsusc.2019.04.125.Search in Google Scholar

64. Saha, S. K., Murmu, M., Murmu, N. C., Banerjee, P. Evaluating electronic structure of quinazolinone and pyrimidinone molecules for its corrosion inhibition effectiveness on target specific mild steel in the acidic medium: a combined DFT and MD simulation study. J. Mol. Liq. 2016, 224, 629–638; https://doi.org/10.1016/j.molliq.2016.09.110.Search in Google Scholar

65. Gber, T. E., Louis, H., Ngana, O. C., Amodu, I. O., Ekereke, E. E., Benjamin, I., Adalikwu, S. A., Adeyinka, A. Yttrium-and zirconium-decorated Mg12O12–X (X = Y, Zr) nanoclusters as sensors for diazomethane (CH2N2) gas. RSC Adv. 2023, 13, 25391–25407; https://doi.org/10.1039/d3ra02939e.Search in Google Scholar PubMed PubMed Central

66. Li, H., Si, S., Yang, K., Mao, Z., Sun, Y., Cao, X., Yu, H., Zhang, J., Ding, C., Liang, H., Wu, L. Hexafluoroisopropanol based silk fibroin coatings on AZ31 biometals with enhanced adhesion, corrosion resistance and biocompatibility. Prog. Org. Coat. 2023, 184, 107881. https://doi.org/10.1016/j.porgcoat.2023.107881.Search in Google Scholar

67. Liu, Z., Fan, B., Zhao, J., Yang, B., Zheng, X. Benzothiazole derivatives-based supramolecular assemblies as efficient corrosion inhibitors for copper in artificial seawater: formation, interfacial release and protective mechanisms. Corros. Sci. 2023, 212, 110957. https://doi.org/10.1016/j.corsci.2022.110957.Search in Google Scholar


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/zpch-2023-0360).


Received: 2023-09-15
Accepted: 2023-11-13
Published Online: 2023-12-06
Published in Print: 2024-02-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 8.12.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0360/pdf
Scroll to top button