Home Highlighting non-covalent interactions to molecular structure, electronic and vibrational spectra in a new hybrid organic-inorganic cobalt complex: synthesis, experimental and computational study
Article
Licensed
Unlicensed Requires Authentication

Highlighting non-covalent interactions to molecular structure, electronic and vibrational spectra in a new hybrid organic-inorganic cobalt complex: synthesis, experimental and computational study

  • Meriam Tahenti , Noureddine ISSAOUI EMAIL logo , Thierry Roisnel , Aleksandr S. Kazachenko , Maximiliano A. Iramain , Silvia Antonia Brandan , Omar Al-Dossary , Anna S. Kazachenko and Houda Marouani
Published/Copyright: October 12, 2023

Abstract

In this study, a novel hybrid organic-inorganic compound, 4-(ammoniummethyl)pyridinium tetracholoraobaltate(II) monohydrate, with non-centrosymmetric properties have been synthesized and characterized by several techniques of powder and single-crystal X-ray diffraction, infrared IR and UV–Visible spectroscopies, and calorimetric (DSC) and the thermogravimetric (TG) analysis. The crystallization of this hybrid compound was found in a monoclinic system with a P21 space group. Additionally, the optimized structures of cation, anion and compound by using hybrid B3LYP method with 6-311++G(d,p) and 6-31+G(d) basis sets shown good correlations with the experimental data and the complete vibrational assignments and force constants are reported for three species. The surface morphology and the micrographs were checked by the scanning electron microscopy (SEM). The UV–Visible absorption spectrum has been used to study the optical properties and the energy gap of our compound. Hirshfeld surface (HS) analysis associated matched up with 2D fingerprint plots were used to confirm the existence of intermolecular and non-covalent interactions in the compound and confirmed by several topological approaches: Quantum Theory of Atom-in-Molecules (QTAIM), reduced density gradient (RDG) and molecular electrostatic potential surface (MEP). The frontier molecular orbitals HOMO and LUMO have been investigated for chemical reactivity and kinetic stability.


Corresponding author: Noureddine ISSAOUI, Laboratory of Quantum and Statistical Physics, LR18ES18, Faculty of Sciences, University of Monastir, Monastir 5079, Tunisia, E-mail:

Funding source: King Saud University

Award Identifier / Grant number: RSP2023R61

Funding source: Universidad Nacional de Tucumán

Award Identifier / Grant number: CIUNT Project No. 26/D714

Funding source: Institute of Chemistry and Chemical Technology, Siberian Branch of the Russian Academy of Sciencess

Award Identifier / Grant number: State assignment no. 0287–548 2021-0012

Acknowledgments

Researchers Supporting Project number (RSP2023R61), King Saud University, Riyadh, Saudi Arabia and with grants from CIUNT Project N° 26/D714 (Consejo de Investigaciones, Universidad Nacional de Tucumán). The authors thank Prof. Tom Sundius for permission to use the MOLVIB program. This study was partially carried out within the state assignment no. 0287–548 2021-0012 for the Institute of Chemistry and Chemical Technology, Siberian Branch of the Russian Academy of Sci-ences.

  1. Research ethics: N/A. This work does not contain any studies with human participants or animals by any of the authors.

  2. Author contributions: Meriam Tahenti – Conceptualization, methodology, software, writing—original draft preparation. Noureddine ISSAOUI – Conceptualization, methodology, software, data curation, resources, writing—original draft preparation, supervision,writing—review and editing, project administration. Thierry Roisnel – methodology, data curation. Aleksandr S. Kazachenko – formal analysis, data curation. Maximiliano A. Iramain – formal analysis. Silvia Antonia Brandan – formal analysis. Omar M. Al-Dossary – Conceptualization, resources. Anna S. Kazachenko – formal analysis. Houda Marouani – Conceptualization, methodology, software, writing—original draft preparation, supervision.

  3. Competing interests: The authors declare no conflicts of interest.

  4. Research funding: This work was supported by King Saud University, Riyadh, Saudi Arabia (RSP2023R61) and with grants from CIUNT Project No. 26/D714 (Consejo de Investigaciones, Universidad Nacional de Tucumán). This study was partially carried out within the state assignment no. 0287–548 2021-0012 for the Institute of Chemistry and Chemical Technology, Siberian Branch of the Russian Academy of Sciences.

  5. Data availability: The data presented in this work may be requested from the corresponding author.

Appendix

CCDC 2183425 contain the supplementary crystallographic data for this compound, and can be obtained free of charge from the Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.

References

1. Katritzky, A. R., Rees, C. W., Scriven, E. F. V. Comprehensive Heterocyclic Chemistry II; Pergamon Press: Oxford, 1996.Search in Google Scholar

2. Aayisha, S., Renuga Devi, T. S., Janani, S., Muthu, S., Raja, M., Sevvanthi, S. DFT, molecular docking and experimental FT-IR, FT-Raman, NMR inquisitions on “4-chloro-N-(4,5-dihydro-1H-imidazole-2-yl)-6-methoxy-2-methylpyrimidin-5-amine”: Alpha-2-imidazoline receptor agonist antihypertensive agent. J. Mol. Struct. 2019, 1186, 468–481; https://doi.org/10.1016/j.molstruc.2019.03.056.Search in Google Scholar

3. A. F. Pozharski, A. T. Soldatenkov, A. R. Katritzky. Heterocycles in Life and Society; Wiley. Scheiner, S.: New York, 1997.Search in Google Scholar

4. Medimagh, M., Issaoui, N., Gatfaoui, S., Al-Dossary, O. S., Kazachenko, A., Marouani, H., Wojcik, M. J. Molecular modeling and biological activity analysis of new organic-inorganic hybrid: 2-(3,4-dihydroxyphenyl) ethanaminium nitrate. J. King Saud Univ. – Sci. 2021, 33(8), 101632; https://doi.org/10.1016/j.jksus.2021.101616.Search in Google Scholar

5. Sivaev, I. B. Nitrogen heterocyclic salts of polyhedral borane anions: from ionic liquids to energetic materials. Chem. Heterocycl. Compd. 2017, 53, 638–658; https://doi.org/10.1007/s10593-017-2106-9.Search in Google Scholar

6. Ben Mleh, C., Brandán, S. A., Issaoui, N., Roisnel, T., Marouani, H. Synthesis, molecular structure, vibrational and theoretical studies of a new non-centrosymmetric organic sulphate with promising NLO properties. J. Mol. Struct. 2018, 1171, 771–785; https://doi.org/10.1016/j.molstruc.2018.06.041.Search in Google Scholar

7. Kwong, H. L., Yeung, H. L., Yeung, C. T., Lee, W. S., Lee, C. S., Wong, W. L. Chiral pyridine-containing ligands in asymmetric catalysis. Coord. Chem. Rev. 2007, 251, 2188; https://doi.org/10.1016/j.ccr.2007.03.010.Search in Google Scholar

8. Sinha, D., Tiwari, A. K., Singh, S., Shukla, G., Mishra, P., Chandra, H., Mishra, A. K. Synthesis, characterization and biological activity of Schiff base analogues of indole-3-carboxaldehyde. Eur. J. Med. Chem. 2008, 43, 160; https://doi.org/10.1016/j.ejmech.2007.03.022.Search in Google Scholar PubMed

9. Bawa, S., Kumar, S. J. Indian. Chem., B 2009, 48, 142.10.1021/ic900811kSearch in Google Scholar PubMed

10. Jarrahpour, A., Khalili, D., De, C. E., Salmi, C., Brunel, J. M., Michel, J. Synthesis, antibacterial, antifungal and antiviral activity evaluation of some new bis-schiff bases of Isatin and their derivatives. Molecules 2007, 12, 1720; https://doi.org/10.3390/12081720.Search in Google Scholar PubMed PubMed Central

11. F. Garci, H. Chebbi, N. Rouzbehd, L. Rochelsd, S. Dischd, A. Klein, M. F. Zid, Structure, optical and magnetic properties of 707 the pyridiniumcobaltate (C6H9N2)2[CoCl4], SSRN 2022, 41, 708.10.1016/j.ica.2022.121003Search in Google Scholar

12. Khalfa, M., Oueslati, A., Khirouni, K., Gargouri, M., Rousseau, A., Lhoste, J., Bardeau, J.-F., Corbel, G. Synthesis, structural and 709 electrical characterization of a new organic inorganic bromide: [(C3H7)4N]2CoBr4. RSC Adv. 2022, 12, 2798–2809; https://doi.org/10.1039/d1ra07965d.Search in Google Scholar PubMed PubMed Central

13. Tahenti, M., Gatfaoui, S., Issaoui, N., Roisnel, T., Marouani, H. A tetrachlorocobaltate(II) salt with 2-amino-5-picolinium: synthesis, theoretical and experimental characterization. J. Mol. Struct. 2020, 1207, 127781; https://doi.org/10.1016/j.molstruc.2020.127781.Search in Google Scholar

14. Tahenti, M., Issaoui, N., Roisnel, T., Marouani, H., Al-Dossary, O., Kazachenko, A. S. Self-assembly of a new cobalt complex, (C6H14N2)3[CoCl4]Cl: synthesis, empirical and DFT calculations. J. King. Saud. Univ. 2022, 34, 101807; https://doi.org/10.1016/j.jksus.2021.101807.Search in Google Scholar

15. Pulay, P., Fogarasi, G., Pongor, G., Boggs, J. E., Vargha, A. J. Am. Chem. Soc. 1983, 105, 7073.10.1021/ja00362a005Search in Google Scholar

16. Rauhut, G., Pulay, P. Transferable scaling factors for density functional derived vibrational force fields. J. Phys. Chem. 1995, 99, 3093–3100; https://doi.org/10.1021/j100010a019.Search in Google Scholar

17. Sundius, T. Scaling of ab-initio force fields by MOLVIB. Vib. Spectrosc. 2002, 29, 89–95; https://doi.org/10.1016/s0924-2031(01)00189-8.Search in Google Scholar

18. Marouani, H., Rzaigui, M., AL-Deyab, S. S. Synthesis and Crystal Structure of (3-NH3CH2C5H4NH)SO4·H2O, X-Ray Structure Analysis, Vol. 27, 2011.10.2116/xraystruct.27.25Search in Google Scholar

19. Ali, B. F., Al-Far, R., F Haddad, S. F. 3-(Ammoniomethyl)pyridiniumdibromide. Acta Crystallogr. 2012, E68, o3066; https://doi.org/10.1107/s1600536812040937.Search in Google Scholar PubMed PubMed Central

20. Landolsi, M., Abid, S. Crystal structure and Hirshfeld surface analysis of trans-2,5-dimethylpiperazine-1,4-diium tetrachloridocobaltate(II). Acta Crystallogr. 2021, E77, 424–427; https://doi.org/10.1107/s2056989021002954.Search in Google Scholar PubMed PubMed Central

21. Song, A. R., Hwang, I. C., Ha, K. Crystal structure of bis(2- (amminiomethyl)pyridinium) hexachloromanganate(II) dehydrate, (C6H10N2)2[MnCl6]·2H2O, Z. Kristallogr. NCS 2007, 222, 43–44.10.1524/ncrs.2007.0015Search in Google Scholar

22. Schutte, M., Visser, H. G., Roodt, A. 2-(Ammoniomethyl)pyridinium sulfate monohydrate. Acta Crystallogr. 2012, E68, o914; https://doi.org/10.1107/s1600536812007714.Search in Google Scholar PubMed PubMed Central

23. Brown, I. D. Acta Crystallogr. 1976, A32, 24.10.1107/S0567739476000041Search in Google Scholar

24. Trabelsi, S., Issaoui, N., Brandán, S. A., Bardak, F., Roisnel, T., Atac, A., Marouani, H. Synthesis and physic-chemical properties of a novel chromate compound with potential biological applications, bis(2-phenylethylammonium) chromate(VI). J. Mol. Struct. 2019, 1185, 168–182; https://doi.org/10.1016/j.molstruc.2019.02.106.Search in Google Scholar

25. Tahenti, M., Issaoui, N., Roisnel, T., Marouani, H. Synthesis, characterization, and computational survey of a novel material template o-xylylenediamine. J. Iran. Chem. Soc. 2022, 19, 1499–1514; https://doi.org/10.1007/s13738-021-02392-9.Search in Google Scholar

26. Chaabane, I., Hlel, F., Guidara, K. Synthesis, Infra-red, Raman, NMR and structural characterization by X-ray Diffraction of [C12H17N2]2CdCl4 and [C6H10N2]2Cd3Cl10 compounds. PMC Phys. B 2008, 1, 11; https://doi.org/10.1186/1754-0429-1-11.Search in Google Scholar

27. Kuruvilla, T. K., Muthu, S., Prasana, J. C., George, J., Sevvanthi, S. Spectroscopic (FT-IR, FT-Raman), quantum mechanical and docking studies on methyl[(3S)-3-(naphthalen-1-yloxy)-3-(thiophen-2-yl)propyl]amine. J. Mol. Struct. 2019, 1175, 163–174; https://doi.org/10.1016/j.molstruc.2018.07.097.Search in Google Scholar

28. Muthu, S., Elamurugu Porchelvi, E., Karabacak, M., Asiri, A. M., Sushmita, S. Swathi. Synthesis, structure, spectroscopic studies (FT-IR, FT-Raman and UV), normal coordinate, NBO and NLO analysis of salicylaldehyde p-chlorophenylthiosemicarbazone. J. Mol. Struct. 2015, 1081, 400–412; https://doi.org/10.1016/j.molstruc.2014.10.024.Search in Google Scholar

29. Kazachenko, A. S., Issaoui, N., Sagaama, A., Malyar, Y. N., Al-Dossary, O., Bousiakou, L. G., Kazachenko, A. S., Miroshnokova, A. V., Xiang, Z. Hydrogen bonds interactions in biuret-water clusters: FTIR, X-ray diffraction, AIM, DFT, RDG, ELF, NLO analysis. J. King Saud. Univ. Sci. 2022, 34, 102350; https://doi.org/10.1016/j.jksus.2022.102350.Search in Google Scholar

30. Sagaama, A., Issaoui, N., Al-Dossary, O., Kazachenko, A. S., Wojcik, M. J. Non-covalent interactions and molecular docking studies on morphine compound. J. King Saud Univ. – Sci. 2021, 33, 101606; https://doi.org/10.1016/j.jksus.2021.101606.Search in Google Scholar

31. Ben Saad, I., Hannachi, N., Roisnel, T., Hlel, F. Ionic organic-inorganic (C6H10N2) (Hg2Cl5)2·3H2O compound: structural study, hirshfeld surface, thermal behavior and spectroscopic studies. J. Mol. Struct. 2018, 1178, 201–211; https://doi.org/10.1016/j.molstruc.2018.09.076.Search in Google Scholar

32. Márquez, M. J., Romani, D., Díaz, S. B., Brandán, S. A. Structural and vibrational characterization of anhydrous and dihydrated species of trehalose based on the FTIR and FTRaman spectra and DFT calculations. J. King Saud Univ. 2018, 30, 229–249; https://doi.org/10.1016/j.jksus.2017.01.009.Search in Google Scholar

33. Ben Jomaa, M., Chebbi, H., Ferjani, H., García-Granda, S., Korbi, N., Fakhar Bourguiba, N. Structural and spectroscopic studies, DFT calculations, thermal characterization and antimicrobial activity of cobalt(II) organic-inorganic hybrid material with benzamidinium cation. J. Coord. Chem. 2021, 74, 1505–1521; https://doi.org/10.1080/00958972.2021.1903451.Search in Google Scholar

34. Chihaouia, N., Hamdi, B., Dammak, T., Zouari, R. Molecular structure, experimental and theoretical spectroscopic characterization and non-linear optical properties studies of a new non-centrosymmetric hybrid material. J. Mol. Struct. 2021, 1123, 144–152; https://doi.org/10.1016/j.molstruc.2016.06.031.Search in Google Scholar

35. Viezbicke, B. D., Patel, S., Davis, B. E., Birnie, D. P. Evaluation of the Tauc method for optical absorption edge determination: ZnO thin films as a model system. Phys. Status Solidi B 2015, 252, 1700; https://doi.org/10.1002/pssb.201552007.Search in Google Scholar

36. Abkari, A., Chaabane, I., Guidara, K. Synthesis, crystal structure, spectroscopic characterization and optical properties of bis(4-acetylanilinium) tetrachlorocobalt (II). Phys. E: Low-Dimens. Syst. Nanostruct. 2017, 86, 210–217; https://doi.org/10.1016/j.physe.2016.06.013.Search in Google Scholar

37. Hanif, M., Kosar, N., Mahmood, T., Muhammad, M., Ullah, F., Nawaz Tahir, M., Ribeiro, A. I., Khan, E. Schiff bases derived from 2-Amino-6-methylbenzothiazole, 2-Amino-5-chloropyridine and 4-chlorobenzaldehyde: structure, computational studies and evaluation of biological activity. ChemistrySelect 2022, 7, e202203386; https://doi.org/10.1002/slct.202203386.Search in Google Scholar

38. Arshad, M., Ahmed, K., Bashir, M., Kosar, N., Kanwal, M., Ahmed, M., Khan, H. U., Khan, S., Rauf, A., Waseem, A., Mahmood, M. Structural properties and potent bioactivities supported by molecular docking and DFT studies of new hydrazones derived from 5-chloroisatin and 2-thiophenecarboxaldehyde. J. Mol. Struct. 2021, 1246, 131204.10.1016/j.molstruc.2021.131204Search in Google Scholar

39. Ahmed, M. N., Shabbir, S., Batool, B., Mahmood, T., Rashid, U., Yasin, K. A., Tahir, M. N., Arias Cassará, M. L., Gil, D. M. A new Insight into non-covalent interactions in 1,4-disubstituted 1H-1,2,3-Triazole: synthesis, X-ray structure, DFT calculations, in vitro lipoxygenase Inhibition (LOX) and in silico studies. J. Mol. Struct., 2021, 1236, 130283; https://doi.org/10.1016/j.molstruc.2021.130283.Search in Google Scholar

40. Johnson, E. R., Keinan, S., Mori-Sanchez, P., Contreras-García, J., Cohen, A. J., Yang, W. J. Am. Chem. Soc. 2010, 132, 6498–6506; https://doi.org/10.1021/ja100936w.Search in Google Scholar PubMed PubMed Central

41. Contreras-Garcia, J., Yang, W., Johnson, E. R. Analysis of hydrogen-bond interaction potentials from the electron density: integration of noncovalent interaction regions. J. Phys. Chem. A 2011, 115, 12983–12990; https://doi.org/10.1021/jp204278k.Search in Google Scholar PubMed PubMed Central

42. Medimagh, M., Issaoui, N., Gatfaoui, S., Al-Dossary, O., KazachenkoMarouani, A. S. H. Molecular modeling and biological activity analysis of new organic-inorganic hybrid: 2-(3,4-dihydroxyphenyl) ethanaminium nitrate. J. King Saud Univ. – Sci. 2021, 33, 101616; https://doi.org/10.1016/j.jksus.2021.101616.Search in Google Scholar

43. Jomaa, I., Issaoui, N., Roisnel, T., Marouani, H. Insight into non-covalent interactions in a tetrachlorocadmate salt with promising NLO properties: experimental and computational analysis. J. Mol. Struct. 2021, 124215, 130730; https://doi.org/10.1016/j.molstruc.2021.130730.Search in Google Scholar

44. Politzer, P., Murray, J. Theor. Chem. Acc. 2002, 108, 134–142; https://doi.org/10.1007/s00214-002-0363-9.Search in Google Scholar

45. Kazachenko, A. S., Akman, F., Sagaama, A., Issaoui, N., Malyar, Y. N., Vasilieva, N.Yu., Borovkova, V. S. Theoretical and experimental study of guar gum sulfation. J. Mol. Model. 2021, 5, 1–15; https://doi.org/10.1007/s00894-020-04645-5.Search in Google Scholar PubMed

46. Bruker, APEX2, SAINT and SADABS; Bruker AXS Inc: Madison, Wisconsin, USA, 2006.Search in Google Scholar

47. Sheldrick, G. M. SHELXT – Integrated space -group and crystal structure determination. Acta Crystallogr. A 2015, 71, 3–8; https://doi.org/10.1107/s2053273314026370.Search in Google Scholar PubMed PubMed Central

48. G. M. Sheldrick, Crystal structure refinement with SHELXL, Acta Crystallogr. C 2015, 71, 3–8; https://doi.org/10.1107/s2053229614024218.Search in Google Scholar

49. Farrugia, L. J. WinGX and ORTEP for windows: an update. J. Appl. Cryst. 2012, 45, 849–854; https://doi.org/10.1107/s0021889812029111.Search in Google Scholar

50. Frisch, M. J., Trucks, G. W., Schlegel, H. B., Scuseria, G. E., Robb, M. A., Cheeseman, J. R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G. A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H. P., Izmaylov, A. F., Bloino, J., Zheng, G., Sonnenberg, J. L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J. A. Jr., Peralta, J. E., Ogliaro, F., Bearpark, M., Heyd, J. J., Brothers, E., Kudin, K. N., Staroverov, V. N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J. C., Iyengar, S. S., Tomasi, J., Cossi, M., Rega, N., Millam, N. J., Klene, M., Knox, J. E., Cross, J. B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R. E., Yazyev, O., Austin, A. J., Cammi, R., Pomelli, C., Ochterski, J. W., Martin, R. L., Morokuma, K., Zakrzewski, V. G., Voth, G. A., Salvador, P., Dannenberg, J. J., Dapprich, S., Daniels, A. D., Farkas, Ö., Foresman, J. B., Ortiz, J. V., Cioslowski, J., Fox, D. J. GAUSSIAN 09, Revision A.02; Gaussian, Inc.: Wallingford CT, 2009.Search in Google Scholar

51. Dennington, Roy, Keith, Todd A., Millam, John M. GaussView, Version 5; Semichem.Inc Shawnee Mission: KS, 2009.Search in Google Scholar

52. Lu, T., Chen, F. Multiwfn: a multifunctiona l wavefunction analyzer. J. Comput. Chem. 2012, 33, 580–592; https://doi.org/10.1002/jcc.22885.Search in Google Scholar PubMed

53. Humphrey, W., Dalke, A., Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 1996, 14, 27–38; https://doi.org/10.1016/0263-7855(96)00018-5.Search in Google Scholar PubMed

54. Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Jayatilaka, D., Spackamn, M. A. Crystal Explorer 3.1; University of Westren Australia: Perth, 2013; p. 773.Search in Google Scholar

Received: 2023-08-25
Accepted: 2023-09-19
Published Online: 2023-10-12
Published in Print: 2023-11-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 29.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0332/html
Scroll to top button