Home Modulation of optical and structural properties of CoFe2O4/ZnO@CNTs for photocatalytic removal of crystal violet and phenol
Article
Licensed
Unlicensed Requires Authentication

Modulation of optical and structural properties of CoFe2O4/ZnO@CNTs for photocatalytic removal of crystal violet and phenol

  • Sajida Parveen , Fatimah Mohammed A. Alzahrani , Maryam Al Huwayz , Wania Adan , Ziyad Awadh Alrowaili , Noor-ul-Ain , Khadija Chaudhary EMAIL logo and Mohammed Sultan Al-Buriahi
Published/Copyright: October 2, 2023

Abstract

Photo-catalysis is a versatile method that is used to remediate water pollution and other issues related to the environment. Metal ferrite with a spinel structure, which is frequently used as a photocatalyst, is another solution for the remediation of environmental pollution. In this work, nanoparticles of cobalt ferrite (CoFe2O4) and zinc oxide (ZnO) were prepared by sol-gel and co-precipitation methods, respectively. CoFe2O4/ZnO (CF/ZnO) and its ternary nanocomposite with CNTs (CF/ZnO@CNTs) were fabricated by a wet-chemical approach. The prepared materials were characterized by different characterization techniques, including X-ray diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR), and UV–visible spectroscopy for the structural, functional group, and optical study respectively. Band gap values calculated for the prepared materials (CF, CF/ZnO, and CF/ZnO) were 2.45 eV, 3.37 eV, and 2.18 eV, respectively. Crystal violet and phenol were used for the evaluation of the photocatalytic efficiency of the prepared samples. In case of crystal violet photocatalytic degradation of the CF, ZnO and CF/ZnO was 21.43 %, 46.43 %, and 66.62 %, respectively. Whereas, CF/ZnO@CNTs outperformed all catalysts with 97.61 % degradation of crystal violet dye. The degradation of phenol by CF/ZnO and CF/ZnO@CNTs was 53.70 % and 83.33 %, respectively. The CF/ZnO@CNTs exhibit excellent photodegradation activity than other photocatalysts used. It is because of heterojunction fabrication and the presence of CNTs as they increase the life span of photo-generated species and enhance the surface area of the catalyst.


Corresponding author: Khadija Chaudhary, Institute of Chemistry, Baghdad-ul-Jadeed Campus, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan, E-mail:
Sajida Parveen and Fatimah Mohammed A. Alzahrani contributed equally to this work.

Acknowledgments

The authors are thankful to the Institute of Chemistry and Institute of Physics, BJ-Campus, The Islamia University of Bahawalpur-Pakistan.

  1. Research ethics: Not applicable.

  2. Author contributions: The author(s) have (has) accepted responsibility for the entire content of this manuscript and approved its submission.

  3. Competing interests: The authors declare no conflicts of interest regarding this article.

  4. Research funding: The authors express their gratitude to Princess Nourah bint Abdulrahman University Researchers Supporting Project number (PNURSP2023R439), Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia.

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Yousaf, S., Kousar, T., Taj, M. B., Agboola, P. O., Shakir, I., Warsi, M. F. Synthesis and characterization of double heterojunction-graphene nano-hybrids for photocatalytic applications. Ceram. Int. 2019, 45, 17806–17817; https://doi.org/10.1016/j.ceramint.2019.05.352.Search in Google Scholar

2. Zhong, S., Wang, X., Wang, Y., Zhou, F., Li, J., Liang, S., Li, C. Preparation of Y3+-doped BiOCl photocatalyst and its enhancing effect on degradation of tetracycline hydrochloride wastewater. J. Alloys Compd. 2020, 843, 155598; https://doi.org/10.1016/j.jallcom.2020.155598.Search in Google Scholar

3. Wang, J., Zhang, Z. Co-precipitation synthesis and photocatalytic properties of BiOCl microflowers. Optik 2020, 204, 164149; https://doi.org/10.1016/j.ijleo.2019.164149.Search in Google Scholar

4. Oturan, M. A., Aaron, J.-J. Advanced oxidation processes in water/wastewater treatment: principles and applications. A review. Crit. Rev. Environ. Sci. Technol. 2014, 44, 2577–2641; https://doi.org/10.1080/10643389.2013.829765.Search in Google Scholar

5. Rasheed, T., Rasheed, A., Munir, S., Ajmal, S., Muhammad Shahzad, Z., Alsafari, I. A., Ragab, S. A., Agboola, P. O., Shakir, I. A cost-effective approach to synthesize NiFe2O4/MXene heterostructures for enhanced photodegradation performance and anti-bacterial activity. Adv. Powder Technol. 2021, 32, 2248–2257; https://doi.org/10.1016/j.apt.2021.05.006.Search in Google Scholar

6. Yousaf, S., Zulfiqar, S., Shahi, M. N., Warsi, M. F., Al-Khalli, N. F., Aly Aboud, M. F., Shakir, I. Tuning the structural, optical and electrical properties of NiO nanoparticles prepared by wet chemical route. Ceram. Int. 2020, 46, 3750–3758; https://doi.org/10.1016/j.ceramint.2019.10.097.Search in Google Scholar

7. Adam, R. E., Pozina, G., Willander, M., Nur, O. Synthesis of ZnO nanoparticles by co-precipitation method for solar driven photodegradation of Congo red dye at different pH. Photon. Nanostruct: Fundam. Appl. 2018, 32, 11–18; https://doi.org/10.1016/j.photonics.2018.08.005.Search in Google Scholar

8. Tariq, N., Fatima, R., Zulfiqar, S., Rahman, A., Warsi, M. F., Shakir, I. Synthesis and characterization of MoO3/CoFe2O4 nanocomposite for photocatalytic applications. Ceram. Int. 2020, 46, 21596–21603; https://doi.org/10.1016/j.ceramint.2020.05.264.Search in Google Scholar

9. Ma, W., Chen, L., Zhu, Y., Dai, J., Yan, Y., Li, C. Facile synthesis of the magnetic BiOCl/ZnFe2O4 heterostructures with enhanced photocatalytic activity under visible-light irradiation. Colloids Surf. A Physicochem. Eng. Asp. 2016, 508, 135–141; https://doi.org/10.1016/j.colsurfa.2016.08.066.Search in Google Scholar

10. Zhang, J., Zhu, K., Zhu, Y., Qin, C., Liu, L., Liu, D., Wang, Y., Gan, W., Fu, X., Hao, H. Enhanced photocatalytic degradation of tetracycline hydrochloride by Al-doped BiOCl microspheres under simulated sunlight irradiation. Chem. Phys. Lett. 2020, 750, 137483; https://doi.org/10.1016/j.cplett.2020.137483.Search in Google Scholar

11. Shang, J., Chen, T., Wang, X., Sun, L., Su, Q. Facile fabrication and enhanced photocatalytic performance: from BiOCl to element-doped BiOCl. Chem. Phys. Lett. 2018, 706, 483–487; https://doi.org/10.1016/j.cplett.2018.06.054.Search in Google Scholar

12. Sudrajat, H., Sujaridworakun, P. Low-temperature synthesis of δ-Bi2O3 hierarchical nanostructures composed of ultrathin nanosheets for efficient photocatalysis. Mater. Des. 2017, 130, 501–511; https://doi.org/10.1016/j.matdes.2017.05.087.Search in Google Scholar

13. Umadevi, M., Jegatha Christy, A. Synthesis, characterization and photocatalytic activity of CuO nanoflowers. Spectrochim. Acta Mol. Biomol. Spectrosc. 2013, 109, 133–137; https://doi.org/10.1016/j.saa.2013.02.028.Search in Google Scholar PubMed

14. Desseigne, M., Dirany, N., Chevallier, V., Arab, M. Shape dependence of photosensitive properties of WO3 oxide for photocatalysis under solar light irradiation. Appl. Surf. Sci. 2019, 483, 313–323; https://doi.org/10.1016/j.apsusc.2019.03.269.Search in Google Scholar

15. Wang, Q., Chen, G., Zhou, C., Jin, R., Wang, L. Sacrificial template method for the synthesis of CdS nanosponges and their photocatalytic properties. J. Alloys Compd. 2010, 503, 485–489; https://doi.org/10.1016/j.jallcom.2010.05.038.Search in Google Scholar

16. Wang, M., Han, J., Hu, Y., Guo, R., Yin, Y. Carbon-incorporated NiO/TiO2 mesoporous shells with p–n heterojunctions for efficient visible light photocatalysis. ACS Appl. Mater. Interfaces 2016, 8, 29511–29521; https://doi.org/10.1021/acsami.6b10480.Search in Google Scholar PubMed

17. Masunga, N., Mmelesi, O. K., Kefeni, K. K., Mamba, B. B. Recent advances in copper ferrite nanoparticles and nanocomposites synthesis, magnetic properties and application in water treatment: review. J. Environ. Chem. Eng. 2019, 7, 103179; https://doi.org/10.1016/j.jece.2019.103179.Search in Google Scholar

18. Kaur, J., Singhal, S. Facile synthesis of ZnO and transition metal doped ZnO nanoparticles for the photocatalytic degradation of Methyl Orange. Ceram. Int. 2014, 40, 7417–7424; https://doi.org/10.1016/j.ceramint.2013.12.088.Search in Google Scholar

19. Rahman, A., Warsi, M. F., Shakir, I., Shahid, M., Zulfiqar, S. Fabrication of Ce3+ substituted nickel ferrite-reduced graphene oxide heterojunction with high photocatalytic activity under visible light irradiation. J. Hazard. Mater. 2020, 394, 122593; https://doi.org/10.1016/j.jhazmat.2020.122593.Search in Google Scholar PubMed

20. Rajaboopathi, S., Thambidurai, S. Green synthesis of seaweed surfactant based CdO-ZnO nanoparticles for better thermal and photocatalytic activity. Curr. Appl. Phys. 2017, 17, 1622–1638; https://doi.org/10.1016/j.cap.2017.09.006.Search in Google Scholar

21. Sobhani-Nasab, A., Behpour, M. Synthesis and characterization of AgO nanostructures by precipitation method and its photocatalyst application. J. Mater. Sci.: Mater. Electron. 2016, 27, 1191–1196; https://doi.org/10.1007/s10854-015-3873-7.Search in Google Scholar

22. Salari, H. Kinetics and mechanism of enhanced photocatalytic activity under visible light irradiation using Cr2O3/Fe2O3 nanostructure derived from bimetallic metal organic framework. J. Environ. Chem. Eng. 2019, 7, 103092; https://doi.org/10.1016/j.jece.2019.103092.Search in Google Scholar

23. Din, S. H. U., Arshed, M. H., Ullah, S., Agboola, P. O., Shakir, I., Irshad, A., Shahid, M. Ag-doped nickel ferrites and their composite with rGO: synthesis, characterization, and solar light induced degradation of coloured and colourless effluents. Ceram. Int. 2022, 48, 15629–15639; https://doi.org/10.1016/j.ceramint.2022.02.097.Search in Google Scholar

24. Alsafari, I. A., Munir, S., Zulfiqar, S., Saif, M. S., Warsi, M. F., Shahid, M. Synthesis, characterization, photocatalytic and antibacterial properties of copper Ferrite/MXene (CuFe2O4/Ti3C2) nanohybrids. Ceram. Int. 2021, 47, 28874–28883; https://doi.org/10.1016/j.ceramint.2021.07.048.Search in Google Scholar

25. Zhong, X., Zhang, K.-X., Wu, D., Ye, X.-Y., Huang, W., Zhou, B.-X. Enhanced photocatalytic degradation of levofloxacin by Fe-doped BiOCl nanosheets under LED light irradiation. Chem. Eng. J. 2020, 383, 123148; https://doi.org/10.1016/j.cej.2019.123148.Search in Google Scholar

26. Warsi, A. Z., Aziz, F., Zulfiqar, S., Haider, S., Shakir, I., Agboola, P. O. Synthesis, characterization, photocatalysis, and antibacterial study of WO3, MXene and WO3/MXene nanocomposite. Nanomaterials 2022, 12, 713; https://doi.org/10.3390/nano12040713.Search in Google Scholar PubMed PubMed Central

27. Irshad, A., Warsi, M. F., Agboola, P. O., Dastgeer, G., Shahid, M. Sol-gel assisted Ag doped NiAl2O4 nanomaterials and their nanocomposites with g-C3N4 nanosheets for the removal of organic effluents. J. Alloys Compd. 2022, 902, 163805; https://doi.org/10.1016/j.jallcom.2022.163805.Search in Google Scholar

28. Rahimi-Nasrabadi, M., Ahmadi, F., Eghbali-Arani, M. Novel route to synthesize nanocrystalline nickel titanate in the presence of amino acids as a capping agent. J. Mater. Sci.: Mater. Electron. 2016, 27, 11873–11878; https://doi.org/10.1007/s10854-016-5331-6.Search in Google Scholar

29. Chokkaram, S., Srinivasan, R., Milburn, D. R., Davis, B. H. Conversion of 2-octanol over nickel-alumina, cobalt-alumina, and alumina catalysts. J. Mol. Catal. A: Chem. 1997, 121, 157–169; https://doi.org/10.1016/s1381-1169(97)00018-6.Search in Google Scholar

30. Staszak, W., Zawadzki, M., Okal, J. Solvothermal synthesis and characterization of nanosized zinc aluminate spinel used in iso-butane combustion. J. Alloys Compd. 2010, 492, 500–507; https://doi.org/10.1016/j.jallcom.2009.11.151.Search in Google Scholar

31. Gama, L., Ribeiro, M. A., Barros, B. S., Kiminami, R. H. A., Weber, I. T., Costa, A. C. F. M. Synthesis and characterization of the NiAl2O4, CoAl2O4 and ZnAl2O4 spinels by the polymeric precursors method. J. Alloys Compd. 2009, 483, 453–455; https://doi.org/10.1016/j.jallcom.2008.08.111.Search in Google Scholar

32. Bhuvaneswari, D., Gangulibabu, Kalaiselvi, N. Surfactant-coassisted sol–gel synthesis to prepare LiNiyMnyCo1 − 2yO2 with improved electrochemical behavior. J. Solid State Electrochem. 2012, 16, 3667–3674; https://doi.org/10.1007/s10008-012-1810-8.Search in Google Scholar

33. Li, W., Li, J., Guo, J. Synthesis and characterization of nanocrystalline CoAl2O4 spinel powder by low temperature combustion. J. Eur. Ceram. Soc. 2003, 23, 2289–2295; https://doi.org/10.1016/s0955-2219(03)00081-5.Search in Google Scholar

34. Valadez-Renteria, E., Perez-Gonzalez, R., Gomez-Solis, C., Diaz-Torres, L. A., Encinas, A., Oliva, J., Rodriguez-Gonzalez, V. A novel and stretchable carbon-nanotube/Ni@ TiO2: W photocatalytic composite for the complete removal of diclofenac drug from the drinking water. J. Environ. Sci. 2023, 126, 575–589; https://doi.org/10.1016/j.jes.2022.05.028.Search in Google Scholar PubMed

35. Farhadi, S., Siadatnasab, F., Khataee, A. Ultrasound-assisted degradation of organic dyes over magnetic CoFe2O4@ZnS core-shell nanocomposite. Ultrason. Sonochem. 2017, 37, 298–309; https://doi.org/10.1016/j.ultsonch.2017.01.019.Search in Google Scholar PubMed

36. Zhang, J., Zhao, Y., Zhang, K., Zada, A., Qi, K. Sonocatalytic degradation of tetracycline hydrochloride with CoFe2O4/g-C3N4 composite. Ultrason. Sonochem. 2023, 94, 106325; https://doi.org/10.1016/j.ultsonch.2023.106325.Search in Google Scholar PubMed PubMed Central

37. Song, J., Zhang, J., Zada, A., Ma, Y., Qi, K. CoFe2O4/NiFe2O4 S-scheme composite for photocatalytic decomposition of antibiotic contaminants. Ceram. Int. 2023, 49, 12327–12333; https://doi.org/10.1016/j.ceramint.2022.12.088.Search in Google Scholar

38. Mohamed, K. M., Benitto, J. J., Vijaya, J. J., Bououdina, M. Recent advances in ZnO-based nanostructures for the photocatalytic degradation of hazardous, non-biodegradable medicines. Crystals 2023, 13, 329; https://doi.org/10.3390/cryst13020329.Search in Google Scholar

39. Neubauer, E., Kitzmantel, M., Hulman, M., Angerer, P. Potential and challenges of metal-matrix-composites reinforced with carbon nanofibers and carbon nanotubes. Compos. Sci. Technol. 2010, 70, 2228–2236; https://doi.org/10.1016/j.compscitech.2010.09.003.Search in Google Scholar

40. Mittal, G., Dhand, V., Rhee, K. Y., Park, S.-J., Lee, W. R. A review on carbon nanotubes and graphene as fillers in reinforced polymer nanocomposites. J. Ind. Eng. Chem. 2015, 21, 11–25; https://doi.org/10.1016/j.jiec.2014.03.022.Search in Google Scholar

41. Ferdosi, E., Bahiraei, H., Ghanbari, D. Investigation the photocatalytic activity of CoFe2O4/ZnO and CoFe2O4/ZnO/Ag nanocomposites for purification of dye pollutants. Sep. Purif. Technol. 2019, 211, 35–39; https://doi.org/10.1016/j.seppur.2018.09.054.Search in Google Scholar

42. Alsafari, I. A., Chaudhary, K., Warsi, M. F., Warsi, A.-Z., Waqas, M., Hasan, M., Jamil, A., Shahid, M. A facile strategy to fabricate ternary WO3/CuO/rGO nano-composite for the enhanced photocatalytic degradation of multiple organic pollutants and antimicrobial activity. J. Alloys Compd. 2022, 938, 168537.10.1016/j.jallcom.2022.168537Search in Google Scholar

43. Chaudhary, H., Chaudhary, K., Zulfiqar, S., Saif, M. S., Alsafari, I. A., Shakir, I., Agboola, P. O., Safdar, M., Warsi, M. F. Fabrication of reduced Graphene Oxide supported Gd3+ doped V2O5 nanorod arrays for superior photocatalytic and antibacterial activities. Ceram. Int. 2021, 47, 32521–32533; https://doi.org/10.1016/j.ceramint.2021.08.146.Search in Google Scholar

44. Chaudhary, K., Aadil, M., Zulfiqar, S., Ullah, S., Haider, S., Agboola, P. O., Warsi, M. F., Shakir, I. Graphene oxide and reduced graphene oxide supported ZnO nanochips for removal of basic dyes from the industrial effluents. Fullerenes, Nanotub. Carbon Nanostruct. 2021, 29, 915–928; https://doi.org/10.1080/1536383x.2021.1917553.Search in Google Scholar

45. Chaudhary, K., Shaheen, N., Zulfiqar, S., Sarwar, M. I., Suleman, M., Agboola, P. O., Shakir, I., Warsi, M. F. Binary WO3-ZnO nanostructures supported rGO ternary nanocomposite for visible light driven photocatalytic degradation of methylene blue. Synth. Met. 2020, 269, 116526; https://doi.org/10.1016/j.synthmet.2020.116526.Search in Google Scholar

46. Tahir, T., Alhashmialameer, D., Zulfiqar, S., Atia, A. M., Warsi, M. F., Chaudhary, K., El Refay, H. M. Wet chemical synthesis of Gd+ 3 doped vanadium Oxide/MXene based mesoporous hierarchical architectures as advanced supercapacitor material. Ceram. Int. 2022, 48, 24840–24849 https://doi.org/10.1016/j.ceramint.2022.05.135.Search in Google Scholar

47. Rafiq, S., Alanazi, A. K., Bashir, S., Elnaggar, A. Y., Mersal, G. A., Ibrahim, M. M., Yousaf, S., Chaudhary, K. Optimization studies for nickel oxide/tin oxide (NiO/Xg SnO2, X: 0.5, 1) based heterostructured composites to design high-performance supercapacitor electrode. Phys. B Condens. Matter 2022, 638, 413931.10.1016/j.physb.2022.413931Search in Google Scholar

48. Rafiq, S., Somaily, H., Imran, M., Akhtar, M., Ayman, I., Baig, M. M., Chaudhary, K., Warsi, M. F. In-situ fabrication of 3D/1D p-NiO/p-ZrO2 heterojunction composites with enhanced photo-degradation activity towards methyl orange and benzimidazole. Ceram. Int. 2022, 48, 32305–32313 https://doi.org/10.1016/j.ceramint.2022.07.172.Search in Google Scholar

49. Mahmood, M., Chaudhary, K., Shahid, M., Shakir, I., Agboola, P. O., Aadil, M. Fabrication of MoO3 nanowires/MXene@ CC hybrid as highly conductive and flexible electrode for next-generation supercapacitors applications. Ceram. Int. 2022, 48, 19314–19323; https://doi.org/10.1016/j.ceramint.2022.03.226.Search in Google Scholar

50. Chaudhary, K., Zulfiqar, S., Somaily, H., Aadil, M., Warsi, M. F., Shahid, M. Rationally designed multifunctional Ti3C2 MXene@ graphene composite aerogel integrated with bimetallic selenides for enhanced supercapacitor performance and overall water splitting. Electrochim. Acta 2022, 431, 141103.10.1016/j.electacta.2022.141103Search in Google Scholar

51. El-Bahy, S. M., Arshad, J., Munir, S., Chaudhary, K., Alhashmialameer, D., Eddy, D. R., Warsi, M. F., Shahid, M. Improved photocatalytic performance of a new silver doped BiSbO4 photocatalyst. Ceram. Int. 2022, 48, 23914–23920; https://doi.org/10.1016/j.ceramint.2022.05.062.Search in Google Scholar

52. Gad, E. S., Chaudhary, K., Ahmed, A. H., Rafiq, S., Yousif, A. M., Suleman, M. Hydrothermal synthesis of bifunctional Ag/MnO2 nanowires decorated with V2O5 nanorice: photocatalytic and electrochemical impedance study for treatment of impurities present in waste water. Opt. Mater. 2023, 135, 113274; https://doi.org/10.1016/j.optmat.2022.113274.Search in Google Scholar

53. Tahir, T., Chaudhary, K., Warsi, M. F., Saif, M. S., Alsafari, I. A., Shakir, I., Agboola, P. O., Haider, S., Zulfiqar, S. Synthesis of sponge like Gd3+ doped vanadium oxide/2D MXene composites for improved degradation of industrial effluents and pathogens. Ceram. Int. 2022, 48, 1969–1980; https://doi.org/10.1016/j.ceramint.2021.09.282.Search in Google Scholar

54. Warsi, M. F., Chaudhary, K., Zulfiqar, S., Rahman, A., Al Safari, I. A., Zeeshan, H. M., Agboola, P. O., Shahid, M., Suleman, M. Copper and silver substituted MnO2 nanostructures with superior photocatalytic and antimicrobial activity. Ceram. Int. 2022, 48, 4930–4939; https://doi.org/10.1016/j.ceramint.2021.11.031.Search in Google Scholar

55. Ihsan, A., Irshad, A., Warsi, M. F., Din, M. I., Zulfiqar, S. NiFe2O4/ZnO nanoparticles and its composite with flat 2D rGO sheets for efficient degradation of colored and colorless effluents photocatalytically. Opt. Mater. 2022, 134, 113213; https://doi.org/10.1016/j.optmat.2022.113213.Search in Google Scholar

56. Murtaza, A., Basha, B., Warsi, M. F., Alrowaili, Z., Al-Buriahi, M., Munir, S. Magnetically separable rGO based ternary composite for enhanced photocatalytic activity. Mater. Sci. Eng. B 2023, 294, 116532; https://doi.org/10.1016/j.mseb.2023.116532.Search in Google Scholar

Received: 2023-05-31
Accepted: 2023-07-12
Published Online: 2023-10-02
Published in Print: 2023-11-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 5.11.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2023-0267/html
Scroll to top button