Abstract
Cocrystallization is an old technique and remains the focus of several research groups working in the field of Chemistry and Pharmacy. This technique is basically in field for improving physicochemical properties of material which can be active pharmaceutical ingredients (APIs) or other chemicals with poor profile. So this review article has been presented in order to combine various concepts for scientists working in the field of chemistry, pharmacy or crystal engineering, also it was attempt to elaborate concepts belonging to crystal designing, their structures and applications. A handsome efforts have been made to bring scientists together working in different fields and to make chemistry easier for a pharmacist and pharmacy for chemists pertaining to cocrystals. Various aspects of chemicals being used as co-formers have been explored which predict the formation of co-crystals or molecular salts and even inorganic cocrystals.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: None declared.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Wang, L., Zhao, L., Liu, W., Chen, R., Gu, Y., Yang, Y. Co-crystallization of glycine anhydride with the hydroxybenzoic acids: Controlled formation of dimers via synthons cooperation and structural characterization. Sci. China Chem. 2012, 55, 2381–2387; https://doi.org/10.1007/s11426-012-4577-y.Search in Google Scholar
2. Cheney, M. L., Zaworotko, M. J., Beaton, S., Singer, R. D. Cocrystal controlled solid-state synthesis. A green chemistry experiment for undergraduate organic chemistry. J. Chem. Educ. 2008, 85, 1649; https://doi.org/10.1021/ed085p1649.Search in Google Scholar
3. Sun, C. C. Cocrystallization for successful drug delivery. Expert Opin. Drug Deliv. 2013, 10, 201–213; https://doi.org/10.1517/17425247.2013.747508.Search in Google Scholar PubMed
4. Aitipamula, S., Chow, P. S., Tan, R. B. Polymorphism in cocrystals: a review and assessment of its significance. CrystEngComm 2014, 16, 3451–3465; https://doi.org/10.1039/c3ce42008f.Search in Google Scholar
5. Bavishi, D. D., Borkhataria, C. H. Spring and parachute: how cocrystals enhance solubility. Prog. Cryst. Growth Char. Mater. 2016, 62, 1–8; https://doi.org/10.1016/j.pcrysgrow.2016.07.001.Search in Google Scholar
6. Duggirala, N. K., Perry, M. L., Almarsson, Ö., Zaworotko, M. J. Pharmaceutical cocrystals: along the path to improved medicines. Chem. Commun. 2016, 52, 640–655; https://doi.org/10.1039/c5cc08216a.Search in Google Scholar PubMed
7. Kumar, S., Nanda, A. Approaches to design of pharmaceutical cocrystals: a review. Mol. Cryst. Liq. Cryst. 2018, 667, 54–77; https://doi.org/10.1080/15421406.2019.1577462.Search in Google Scholar
8. Pando, C., Cabanas, A., Cuadra, I. A. Preparation of pharmaceutical co-crystals through sustainable processes using supercritical carbon dioxide: a review. RSC Adv. 2016, 6, 71134–71150; https://doi.org/10.1039/c6ra10917a.Search in Google Scholar
9. Qiao, N., Li, M., Schlindwein, W., Malek, N., Davies, A., Trappitt, G. Pharmaceutical cocrystals: an overview. Int. J. Pharm. 2011, 419, 1–11; https://doi.org/10.1016/j.ijpharm.2011.07.037.Search in Google Scholar PubMed
10. Ross, S., Lamprou, D., Douroumis, D. Engineering and manufacturing of pharmaceutical co-crystals: a review of solvent-free manufacturing technologies. Chem. Commun. 2016, 52, 8772–8786; https://doi.org/10.1039/c6cc01289b.Search in Google Scholar PubMed
11. Steed, J. W. The role of co-crystals in pharmaceutical design. Trends Pharmacol. Sci. 2013, 34, 185–193; https://doi.org/10.1016/j.tips.2012.12.003.Search in Google Scholar PubMed
12. Vishweshwar, P., McMahon, J. A., Bis, J. A., Zaworotko, M. J. Pharmaceutical co-crystals. J. Pharmaceut. Sci. 2006, 95, 499–516; https://doi.org/10.1002/jps.20578.Search in Google Scholar PubMed
13. Berge, S. M., Bighley, L. D., Monkhouse, D. C. Pharmaceutical salts. J. Pharmaceut. Sci. 1977, 66, 1–19; https://doi.org/10.1002/jps.2600660104.Search in Google Scholar PubMed
14. Almarsson, Ö., Peterson, M. L., Zaworotko, M. The A to Z of pharmaceutical cocrystals: a decade of fast-moving new science and patents. Pharmaceut. Patent Analyst 2012, 1, 313–327; https://doi.org/10.4155/ppa.12.29.Search in Google Scholar PubMed
15. Almarsson, Ö., Zaworotko, M. J. Crystal engineering of the composition of pharmaceutical phases. Do pharmaceutical co-crystals represent a new path to improved medicines? Chem. Commun. 2004, 17, 1889–1896; https://doi.org/10.1039/b402150a.Search in Google Scholar PubMed
16. Aakery, C. B., Salmon, D. J. Building co-crystals with molecular sense and supramolecular sensibility. CrystEngComm 2005, 7, 439–448. https://doi.org/10.1039/b505883j.Search in Google Scholar
17. Trask, A. V., Motherwell, W. S., Jones, W. Pharmaceutical cocrystallization: engineering a remedy for caffeine hydration. Cryst. Growth Des. 2005, 5, 1013–1021; https://doi.org/10.1021/cg0496540.Search in Google Scholar
18. Morissette, S. L., Almarsson, Ö., Peterson, M. L., Remenar, J. F., Read, M. J., Lemmo, A. V., Ellis, S., Cima, M. J., Gardner, C. R. High-throughput crystallization: polymorphs, salts, co-crystals and solvates of pharmaceutical solids. Adv. Drug Deliv. Rev. 2004, 56, 275–300; https://doi.org/10.1016/j.addr.2003.10.020.Search in Google Scholar PubMed
19. Rodríguez-Hornedo, N. Cocrystals: molecular design of pharmaceutical materials. Mol. Pharmaceutics 2007, 4, 299–300.10.1021/mp070042vSearch in Google Scholar
20. Sun, C., Grant, D. J. Influence of crystal structure on the tableting properties of sulfamerazine polymorphs. Pharmaceut. Res. 2001, 18, 274–280; https://doi.org/10.1023/a:1011038526805.10.1023/A:1011038526805Search in Google Scholar
21. Blagden, N., de Matas, M., Gavan, P. T., York, P. Crystal engineering of active pharmaceutical ingredients to improve solubility and dissolution rates. Adv. Drug Deliv. Rev. 2007, 59, 617–630; https://doi.org/10.1016/j.addr.2007.05.011.Search in Google Scholar PubMed
22. Schultheiss, N., Newman, A. Pharmaceutical cocrystals and their physicochemical properties. Cryst. Growth Des. 2009, 9, 2950–2967; https://doi.org/10.1021/cg900129f.Search in Google Scholar PubMed PubMed Central
23. Bolla, G., Nangia, A. Pharmaceutical cocrystals: walking the talk. Chem. Commun. 2016, 52, 8342–8360; https://doi.org/10.1039/c6cc02943d.Search in Google Scholar PubMed
24. Bolla, G., Nangia, A. Multicomponent ternary cocrystals of the sulfonamide group with pyridine-amides and lactams. Chem. Commun. 2015, 51, 15578–15581; https://doi.org/10.1039/c5cc06475a.Search in Google Scholar PubMed
25. Mashhadi, S. M. A., Yunus, U., Bhatti, M. H., Tahir, M. N. Isoniazid cocrystals with anti-oxidant hydroxy benzoic acids. J. Mol. Struct. 2014, 1076, 446–452; https://doi.org/10.1016/j.molstruc.2014.07.070.Search in Google Scholar
26. Lahamage, S. R., Darekar, A. B., Saudagar, R. B. Pharmaceutical co-crystallization. Asian J. Res. Pharmaceut. Sci. 2016, 6, 51–58; https://doi.org/10.5958/2231-5659.2016.00008.4.Search in Google Scholar
27. Prasad, R. V., Rakesh, M. G., Jyotsna, R. M., Mangesh, S. T., Anita, P. S., Mayur, P. K. Pharmaceutical cocrystallization: a review. Int. J. Pharm. Chem. Sci. 2012, 1, 725–736.Search in Google Scholar
28. Nanjwade, V., Manvi, F., Ali, M. S., Nanjwade, B., Maste, M. New trends in the co-crystallization of active pharmaceutical ingredients. J. Appl. Pharmaceut. Sci. 2011, 1, 1–5.Search in Google Scholar
29. Siswandi, S., Rusdiana, T., Levita, J. Virtual screening of co-formers for ketoprofen co-crystallization and the molecular properties of the co-crystal. J. Appl. Pharmaceut. Sci. 2015, 5, 78–82; https://doi.org/10.7324/japs.2015.50613.Search in Google Scholar
30. Atkinson, M. B., Mariappan, S. S., Bučar, D.-K., Baltrusaitis, J., Friščić, T., Sinada, N. G., MacGillivray, L. R. Crystal engineering rescues a solution organic synthesis in a cocrystallization that confirms the configuration of a molecular ladder. Proc. Natl. Acad. Sci. USA 2011, 108, 10974–10979; https://doi.org/10.1073/pnas.1104352108.Search in Google Scholar PubMed PubMed Central
31. Stahly, G. P. A survey of cocrystals reported prior to 2000. Cryst. Growth Des. 2009, 9, 4212–4229; https://doi.org/10.1021/cg900873t.Search in Google Scholar
32. Etter, M. C. Hydrogen bonds as design elements in organic chemistry. J. Phys. Chem. A 1991, 95, 4601–4610; https://doi.org/10.1021/j100165a007.Search in Google Scholar
33. Etter, M. C., Frankenbach, G. M. Hydrogen-bond directed cocrystallization as a tool for designing acentric organic solids. Chem. Mater. 1989, 1, 10–12; https://doi.org/10.1021/cm00001a005.Search in Google Scholar
34. Etter, M. C., Reutzel, S. M., Choo, C. G. Self-organization of adenine and thymine in the solid state. J. Am. Chem. Soc. 1993, 115, 4411–4412; https://doi.org/10.1021/ja00063a089.Search in Google Scholar
35. Etter, M. C., Urbanczyk-Lipkowska, Z., Zia-Ebrahimi, M., Panunto, T. W. Hydrogen bond-directed cocrystallization and molecular recognition properties of diarylureas. J. Am. Chem. Soc. 1990, 112, 8415–8426; https://doi.org/10.1021/ja00179a028.Search in Google Scholar
36. Bettinetti, G., Caira, M. R., Callegari, A., Merli, M., Sorrenti, M., Tadini, C. Structure and solid‐state chemistry of anhydrous and hydrated crystal forms of the trimethoprim‐sulfamethoxypyridazine 1:1 molecular complex. J. Pharmaceut. Sci. 2000, 89, 478–489; https://doi.org/10.1002/(sici)1520-6017(200004)89:4<478::aid-jps5>3.0.co;2-5.10.1002/(SICI)1520-6017(200004)89:4<478::AID-JPS5>3.0.CO;2-5Search in Google Scholar
37. Caira, M. R. Molecular complexes of sulfonamides. 2.1:1 complexes between drug molecules: sulfadimidine-acetylsalicylic acid and sulfadimidine-4-aminosalicylic acid. J. Crystallogr. Spectrosc. Res. 1992, 22, 193–200; https://doi.org/10.1007/bf01186256.Search in Google Scholar
38. Etter, M. C., Reutzel, S. M. Hydrogen bond directed cocrystallization and molecular recognition properties of acyclic imides. J. Am. Chem. Soc. 1991, 113, 2586–2598; https://doi.org/10.1021/ja00007a037.Search in Google Scholar
39. Pedireddi, V., Jones, W., Chorlton, A., Docherty, R. Creation of crystalline supramolecular arrays: a comparison of co-crystal formation from solution and by solid-state grinding. Chem. Commun. 1996, 8, 987–988; https://doi.org/10.1039/cc9960000987.Search in Google Scholar
40. Trask, A. V., Motherwell, W. S., Jones, W. Solvent-drop grinding: green polymorph control of cocrystallisation. Chem. Commun. 2004, 7, 890–891; https://doi.org/10.1039/b400978a.Search in Google Scholar
41. Serajuddin, A. T. Salt formation to improve drug solubility. Adv. Drug Deliv. Rev. 2007, 59, 603–616; https://doi.org/10.1016/j.addr.2007.05.010.Search in Google Scholar
42. Hancock, B. C., Parks, M. What is the true solubility advantage for amorphous pharmaceuticals? Pharmaceut. Res. 2000, 17, 397–404; https://doi.org/10.1023/a:1007516718048.10.1023/A:1007516718048Search in Google Scholar
43. Yoshioka, S., Aso, Y. Correlations between molecular mobility and chemical stability during storage of amorphous pharmaceuticals. J. Pharmaceut. Sci. 2007, 96, 960–981; https://doi.org/10.1002/jps.20926.Search in Google Scholar PubMed
44. Andronis, V., Yoshioka, M., Zografi, G. Effects of sorbed water on the crystallization of indomethacin from the amorphous state. J. Pharmaceut. Sci. 1997, 86, 346–351; https://doi.org/10.1021/js9602711.Search in Google Scholar PubMed
45. Andronis, V., Zografi, G. Crystal nucleation and growth of indomethacin polymorphs from the amorphous state. J. Non-Cryst. Solids 2000, 271, 236–248; https://doi.org/10.1016/s0022-3093(00)00107-1.Search in Google Scholar
46. Zhu, H., Khankari, R. K., Padden, B. E., Munson, E. J., Gleason, W. B., Grant, D. J. Physicochemical characterization of nedocromil bivalent metal salt hydrates. 1. Nedocromil magnesium. J. Pharmaceut. Sci. 1996, 85, 1026–1034; https://doi.org/10.1021/js9602352.Search in Google Scholar PubMed
47. Zhu, H., Padden, B. E., Munson, E. J., Grant, D. J. Physicochemical characterization of nedocromil bivalent metal salt hydrates. 2. Nedocromil zinc. J. Pharmaceut. Sci. 1997, 86, 418–429; https://doi.org/10.1021/js9604422.Search in Google Scholar PubMed
48. Zhu, H., Yuen, C., Grant, D. J. Influence of water activity in organic solvent+ water mixtures on the nature of the crystallizing drug phase. 1. Theophylline. Int. J. Pharm. 1996, 135, 151–160; https://doi.org/10.1016/0378-5173(95)04466-3.Search in Google Scholar
49. Phadnis, N. V., Suryanarayanan, R. Polymorphism in anhydrous theophylline—implications on the dissolution rate of theophylline tablets. J. Pharmaceut. Sci. 1997, 86, 1256–1263; https://doi.org/10.1021/js9701418.Search in Google Scholar PubMed
50. Cui, Y. A material science perspective of pharmaceutical solids. Int. J. Pharm. 2007, 339, 3–18; https://doi.org/10.1016/j.ijpharm.2007.04.021.Search in Google Scholar PubMed
51. Zhang, C., Xiong, Y., Jiao, F., Wang, M., Li, H. Redefining the term of “cocrystal” and broadening its intention. Cryst. Growth Des. 2019, 19, 1471–1478; https://doi.org/10.1021/acs.cgd.8b01537.Search in Google Scholar
52. Ancheria, R. K., Jain, S., Kumar, D., Soni, S. L., Sharma, M. An overview of pharmaceutical Co-crystal. Asian J. Pharmaceut. Res. Dev. 2019, 7, 39–46; https://doi.org/10.22270/ajprd.v7i2.483.Search in Google Scholar
53. Childs, S. L., Rodríguez-Hornedo, N., Reddy, L. S., Jayasankar, A., Maheshwari, C., McCausland, L., Shipplett, R., Stahly, B. C. Screening strategies based on solubility and solution composition generate pharmaceutically acceptable cocrystals of carbamazepine. CrystEngComm 2008, 10, 856–864; https://doi.org/10.1039/b715396a.Search in Google Scholar
54. Fleischman, S. G., Kuduva, S. S., McMahon, J. A., Moulton, B., Bailey Walsh, R. D., Rodríguez-Hornedo, N., Zaworotko, M. J. Crystal engineering of the composition of pharmaceutical phases: multiple-component crystalline solids involving carbamazepine. Cryst. Growth Des. 2003, 3, 909–919; https://doi.org/10.1021/cg034035x.Search in Google Scholar
55. McMahon, J. A., Bis, J. A., Vishweshwar, P., Shattock, T. R., McLaughlin, O. L., Zaworotko, M. J. Crystal engineering of the composition of pharmaceutical phases. 3. Primary amide supramolecular heterosynthons and their role in the design of pharmaceutical co-crystals. Z. Kristallogr. 2005, 220, 340–350; https://doi.org/10.1524/zkri.220.4.340.61624.Search in Google Scholar
56. Remenar, J. F., Morissette, S. L., Peterson, M. L., Moulton, B., MacPhee, J. M., Guzmán, H. R., Almarsson, Ö. Crystal engineering of novel cocrystals of a triazole drug with 1,4-dicarboxylic acids. J. Am. Chem. Soc. 2003, 125, 8456–8457; https://doi.org/10.1021/ja035776p.Search in Google Scholar PubMed
57. Childs, S. L., Hardcastle, K. I. Cocrystals of piroxicam with carboxylic acids. Cryst. Growth Des. 2007, 7, 1291–1304; https://doi.org/10.1021/cg060742p.Search in Google Scholar
58. Reddy, L. S., Bethune, S. J., Kampf, J. W., Rodriguez-Hornedo, N. Cocrystals and salts of gabapentin: pH dependent cocrystal stability and solubility. Cryst. Growth Des. 2008, 9, 378–385; https://doi.org/10.1021/cg800587y.Search in Google Scholar
59. Nehm, S. J., Rodríguez-Spong, B., Rodríguez-Hornedo, N. Phase solubility diagrams of cocrystals are explained by solubility product and solution complexation. Cryst. Growth Des. 2006, 6, 592–600; https://doi.org/10.1021/cg0503346.Search in Google Scholar
60. Jayasankar, A., Reddy, L. S., Bethune, S. J., Rodríguez-Hornedo, N. Role of cocrystal and solution chemistry on the formation and stability of cocrystals with different stoichiometry. Cryst. Growth Des. 2009, 9, 889–897; https://doi.org/10.1021/cg800632r.Search in Google Scholar
61. Robinson, R., Biggs, A. The ionization constants of p-aminobenzoic acid in aqueous solution at 25 C. Aust. J. Chem. 1957, 10, 128–134; https://doi.org/10.1071/ch9570128.Search in Google Scholar
62. Bethune, S. J., Huang, N., Jayasankar, A., Rodriguez-Hornedo, N. Understanding and predicting the effect of cocrystal components and pH on cocrystal solubility. Cryst. Growth Des. 2009, 9, 3976–3988; https://doi.org/10.1021/cg9001187.Search in Google Scholar
63. Grothe, E., Meekes, H., Vlieg, E., Ter Horst, J., de Gelder, R. d. Solvates, salts, and cocrystals: a proposal for a feasible classification system. Cryst. Growth Des. 2016, 16, 3237–3243; https://doi.org/10.1021/acs.cgd.6b00200.Search in Google Scholar
64. Kotak, U., Prajapati, V., Solanki, H., Jani, G., Jha, P. Co-crystallization technique its rationale and recent progress. World J. Pharm. Pharmaceut. Sci. 2015, 4, 1484–1508.Search in Google Scholar
65. Hickey, M. B., Peterson, M. L., Scoppettuolo, L. A., Morrisette, S. L., Vetter, A., Guzmán, H., Remenar, J. F., Zhang, Z., Tawa, M. D., Haley, S. Performance comparison of a co-crystal of carbamazepine with marketed product. Eur. J. Pharm. Biopharm. 2007, 67, 112–119; https://doi.org/10.1016/j.ejpb.2006.12.016.Search in Google Scholar PubMed
66. Harada, J., Fujiwara, T., Ogawa, K. Crucial role of fluorescence in the solid-state thermochromism of salicylideneanilines. J. Am. Chem. Soc. 2007, 129, 16216–16221; https://doi.org/10.1021/ja076635g.Search in Google Scholar PubMed
67. Aakeröy, C. B., Seddon, K. R. The hydrogen bond and crystal engineering. Chem. Soc. Rev. 1993, 22, 397–407; https://doi.org/10.1039/cs9932200397.Search in Google Scholar
68. Rodríguez-Hornedo, N., Nehm, S. J., Seefeldt, K. F., Pagan-Torres, Y., Falkiewicz, C. J. Reaction crystallization of pharmaceutical molecular complexes. Mol. Pharm. 2006, 3, 362–367; https://doi.org/10.1021/mp050099m.Search in Google Scholar PubMed
69. Desiraju, G. R. Supramolecular synthons in crystal engineering—a new organic synthesis. Angew Chem. Int. Ed. Engl. 1995, 34, 2311–2327; https://doi.org/10.1002/anie.199523111.Search in Google Scholar
70. Elbagerma, M., Edwards, H., Munshi, T., Scowen, I. Identification of a new co-crystal of salicylic acid and benzamide of pharmaceutical relevance. Anal. Bioanal. Chem. 2010, 397, 137–146; https://doi.org/10.1007/s00216-009-3375-7.Search in Google Scholar PubMed
71. Khan, M., Enkelmann, V., Brunklaus, G. O–N···heterosynthon robust supramolecular unit for crystal engineering. Cryst. Growth Des. 2009, 9, 2354–2362; https://doi.org/10.1021/cg801249b.Search in Google Scholar
72. Weyna, D. R., Shattock, T., Vishweshwar, P., Zaworotko, M. J. Synthesis and structural characterization of cocrystals and pharmaceutical cocrystals: mechanochemistry vs slow evaporation from solution. Cryst. Growth Des. 2009, 9, 1106–1123; https://doi.org/10.1021/cg800936d.Search in Google Scholar
73. Du, M., Zhang, Z.-H., Zhao, X.-J. Cocrystallization of trimesic acid and pyromellitic acid with bent dipyridines. Cryst. Growth Des. 2005, 5, 1247–1254; https://doi.org/10.1021/cg0495680.Search in Google Scholar
74. Childs, S. L., Stahly, G. P., Park, A. The salt-cocrystal continuum: the influence of crystal structure on ionization state. Mol. Pharm. 2007, 4, 323–338; https://doi.org/10.1021/mp0601345.Search in Google Scholar PubMed
75. Sekhon, B. S. Pharmaceutical co-crystals – a review. ARS Pharm. 2009, 50, 99–117.Search in Google Scholar
76. Huang, N., Rodríguez‐Hornedo, N. Engineering cocrystal solubility, stability, and pHmax by micellar solubilization. J. Pharmaceut. Sci. 2011, 100, 5219–5234; https://doi.org/10.1002/jps.22725.Search in Google Scholar PubMed
77. Aspley, C., Buil, M., Higgitt, C., Perutz, R., Long, C. A new combination of donor and acceptor: bis (η 6-benzene) chromium and hexafluorobenzene form a charge-transfer stacked crystal. Chem. Commun. 1999, 11, 1027–1028; https://doi.org/10.1039/a900919a.Search in Google Scholar
78. Abidi, S. S. A., Azim, Y., Gupta, A. K., Pradeep, C. P. Cocrystals of indole-3-acetic acid and indole-3-butyric acid: synthesis, structural characterization and Hirshfeld surface analysis. J. Mol. Struct. 2018, 1166, 202–213; https://doi.org/10.1016/j.molstruc.2018.04.035.Search in Google Scholar
79. Dey, A., Bera, S., Biradha, K. Cocrystals and salts of pyridine-3,5-bis (1-methyl-benzimidazole-2-yl) with pyromellitic acid: aromatic guest inclusion and separation via benzimidazole–carboxylic acid heterosynthon. Cryst. Growth Des. 2014, 15, 318–325; https://doi.org/10.1021/cg501380m.Search in Google Scholar
80. Nijhawan, M., Santhosh, A., Babu, P. S., Subrahmanyam, C. Solid state manipulation of lornoxicam for cocrystals–physicochemical characterization. Drug Dev. Ind. Pharm. 2014, 40, 1163–1172; https://doi.org/10.3109/03639045.2013.804834.Search in Google Scholar PubMed
81. Kubo, W., Konno, Y., Miyazaki, S., Attwood, D. In situ gelling pectin formulations for oral sustained delivery of paracetamol. Drug Dev. Ind. Pharm. 2004, 30, 593–599; https://doi.org/10.1081/ddc-120037490.Search in Google Scholar PubMed
82. Lu, J., Li, Y.-P., Wang, J., Li, Z., Rohani, S., Ching, C.-B. Pharmaceutical cocrystals: a comparison of sulfamerazine with sulfamethazine. J. Cryst. Growth 2011, 335, 110–114; https://doi.org/10.1016/j.jcrysgro.2011.09.032.Search in Google Scholar
83. Swapna, B., Maddileti, D., Nangia, A. Cocrystals of the tuberculosis drug isoniazid: polymorphism, isostructurality, and stability. Cryst. Growth Des. 2014, 14, 5991–6005; https://doi.org/10.1021/cg501182t.Search in Google Scholar
84. Mohamed, S., Tocher, D. A., Price, S. L. Computational prediction of salt and cocrystal structures—does a proton position matter? Int. J. Pharm. 2011, 418, 187–198; https://doi.org/10.1016/j.ijpharm.2011.03.063.Search in Google Scholar PubMed
85. Aakeröy, C. B., Rajbanshi, A., Li, Z. J., Desper, J. Mapping out the synthetic landscape for re-crystallization, co-crystallization and salt formation. CrystEngComm 2010, 12, 4231–4239; https://doi.org/10.1039/c0ce00052c.Search in Google Scholar
86. Tong, W.-Q. T., Whitesell, G. In situ salt screening-a useful technique for discovery support and preformulation studies. Pharmaceut. Dev. Technol. 1998, 3, 215–223; https://doi.org/10.3109/10837459809028498.Search in Google Scholar PubMed
87. Pratik, S. M., Datta, A. Nonequimolar mixture of organic acids and bases: an exception to the rule of thumb for salt or cocrystal. J. Phys. Chem. B 2016, 120, 7606–7613; https://doi.org/10.1021/acs.jpcb.6b05830.Search in Google Scholar PubMed
88. Lee, R., Firbank, A. J., Probert, M. R., Steed, J. W. Expanding the pyridine–formic acid cocrystal landscape under extreme conditions. Cryst. Growth Des. 2016, 16, 4005–4011; https://doi.org/10.1021/acs.cgd.6b00544.Search in Google Scholar
89. Chernyshev, V. V., Pirogov, S. V., Shishkina, I. N., Velikodny, Y. A. Monoclinic form I of clopidogrel hydrogen sulfate from powder diffraction data. Acta Crystallogr., Sect. E: Struct. Rep. Online 2010, 66, o2101–o2102; https://doi.org/10.1107/s1600536810028783.Search in Google Scholar
90. Sansam, B. C., Anderson, K. M., Steed, J. W. A simple strategy for crystal engineering water clusters. Cryst. Growth Des. 2007, 7, 2649–2653; https://doi.org/10.1021/cg700932s.Search in Google Scholar
91. Muthiah, P. T., Umadevi, B., Stanley, N., Shui, X., Eggleston, D. S. Hydrogen bonding patterns in trimethoprim sulfate trihydrate [trimethoprim=2,4-diamino-5-(3,4,5-methoxybenzyl) pyrimidine]. Acta Crystallogr., Sect. E: Struct. Rep. 2001, 57, o1179–o1182; https://doi.org/10.1107/s1600536801018657.Search in Google Scholar
92. Fucke, K., Steed, J. W. X-ray and neutron diffraction in the study of organic crystalline hydrates. Water 2010, 2, 333–350; https://doi.org/10.3390/w2030333.Search in Google Scholar
93. Khankari, R. K., Grant, D. J. Pharmaceutical hydrates. Thermochim. Acta 1995, 248, 61–79; https://doi.org/10.1016/0040-6031(94)01952-d.Search in Google Scholar
94. Skieneh, J., Khalili Najafabadi, B., Horne, S., Rohani, S. Crystallization of esomeprazole magnesium water/butanol solvate. Molecules 2016, 21, 544; https://doi.org/10.3390/molecules21040544.Search in Google Scholar PubMed PubMed Central
95. Babu, N. J., Sanphui, P., Nangia, A. Crystal engineering of stable temozolomide cocrystals. Chem. Asian J. 2012, 7, 2274–2285; https://doi.org/10.1002/asia.201200205.Search in Google Scholar PubMed
96. Braga, D., Maini, L., Polito, M., Grepioni, F. Hydrogen bonding interactions between ions: a powerful tool in molecular crystal engineering. In Supramolecular Assembly Via Hydrogen Bonds II: Springer, 2004; pp. 1–32.10.1007/b14139Search in Google Scholar
97. Spek, A. L. Structure validation in chemical crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 2009, 65, 148–155; https://doi.org/10.1107/s090744490804362x.Search in Google Scholar
98. Sun, L., Zhu, W., Wang, W., Yang, F., Zhang, C., Wang, S., Zhang, X., Li, R., Dong, H., Hu, W. Intermolecular charge‐transfer interactions facilitate two‐photon absorption in styrylpyridine–tetracyanobenzene cocrystals. Angew. Chem. Int. Ed. 2017, 56, 7831–7835; https://doi.org/10.1002/ange.201703439.Search in Google Scholar
99. Aakeröy, C. B., Fasulo, M. E., Desper, J. Cocrystal or salt: does it really matter? Mol. Pharm. 2007, 4, 317–322; https://doi.org/10.1021/mp060126o.Search in Google Scholar PubMed
100. Wilson, C. C. Migration of the proton in the strong O—H···O hydrogen bond in urea–phosphoric acid (1/1). Acta Crystallogr. Sect. B Struct. Sci. 2001, 57, 435–439; https://doi.org/10.1107/s0108768100018875.Search in Google Scholar PubMed
101. Kesel, A. J., Sonnenbichler, I., Polborn, K., Gürtler, L., Klinkert, W. E., Modolell, M., Nüssler, A. K., Oberthür, W. A new antioxidative vitamin B6 analogue modulates pathophysiological cell proliferation and damage. Bioorg. Med. Chem. 1999, 7, 359–367; https://doi.org/10.1016/s0968-0896(98)00229-6.Search in Google Scholar PubMed
102. Dean, P. M., Turanjanin, J., Yoshizawa-Fujita, M., MacFarlane, D. R., Scott, J. L. Exploring an anti-crystal engineering approach to the preparation of pharmaceutically active ionic liquids. Cryst. Growth Des. 2008, 9, 1137–1145; https://doi.org/10.1021/cg8009496.Search in Google Scholar
103. Forgacs, P., Provost, J., Touche, A., Guenard, D., Thal, C., Guilhem, J. Structures de l’odyendane et l’odyendene deux nouveaux quassinoides d’odyendea gabonensis (pierre) engl. Simaroubacees. Tetrahedron Lett. 1985, 26, 3457–3460; https://doi.org/10.1016/s0040-4039(00)98663-5.Search in Google Scholar
104. Chierotti, M. R., Gobetto, R. NMR crystallography: the use of dipolar interactions in polymorph and co-crystal investigation. CrystEngComm 2013, 15, 8599–8612; https://doi.org/10.1039/c3ce41026a.Search in Google Scholar
105. Desiraju, G. R. Hydrogen bridges in crystal engineering: interactions without borders. Acc. Chem. Res. 2002, 35, 565–573; https://doi.org/10.1021/ar010054t.Search in Google Scholar PubMed
106. Braga, D., Maini, L., Paganelli, F., Tagliavini, E., Casolari, S., Grepioni, F. Organometallic building blocks for crystal engineering. Synthesis, structure and hydrogen bonding interactions in [Fe (η5-C5H4-CH2 (CH3) OH) 2],[Fe (η5-C5H3 (CH3) COOH) 2],[Fe (η5-C5H4CH (CH3) NH (η5-C5H4CH (CH3))] and in the diaminecyclohexane salt [Fe (η5-C5H4COO) 2] 2−[(1S,2S)-(NH3) 2C6H10] 2+2 [H2O]. J. Organomet. Chem. 2001, 637, 609–615; https://doi.org/10.1016/s0022-328x(01)00977-9.Search in Google Scholar
107. Shan, N., Bond, A., Jones, W. Crystal engineering using 4,4′-bipyridyl with di-and tricarboxylic acids. Cryst. Eng. 2002, 5, 9–24; https://doi.org/10.1016/s1463-0184(02)00002-3.Search in Google Scholar
108. Chin, D. N., Gordon, D. M. Noncovalent synthesis: using physical-organic chemistry to make aggregates. Acc. Chem. Res. 1995, 28, 37–44.10.1021/ar00049a006Search in Google Scholar
109. Liu, J.-Q., Wang, Y.-Y., Ma, L.-F., Zhang, W.-H., Zeng, X.-R., Zhong, F., Shi, Q.-Z., Peng, S.-M. Three new supramolecular networks formed via hydrogen bonding interactions: syntheses, crystal structures and magnetic properties. Inorg. Chim. Acta 2008, 361, 173–182; https://doi.org/10.1016/j.ica.2007.06.044.Search in Google Scholar
110. Biswas, C., Drew, M. G., Escudero, D., Frontera, A., Ghosh, A. Anion–π, lone‐pair–π, π–π and hydrogen‐bonding interactions in a CuII complex of 2‐picolinate and protonated 4,4′‐bipyridine: crystal structure and theoretical studies. Eur. J. Inorg. Chem. 2009, 2009, 2238–2246; https://doi.org/10.1002/ejic.200900110.Search in Google Scholar
111. Jin, S., Yan, P., Wang, D., Xu, Y., Jiang, Y., Hu, L. Salt and co-crystal formation from 6-bromobenzo[d]thiazol-2-amine and different carboxylic acid derivatives. J. Mol. Struct. 2012, 1016, 55–63; https://doi.org/10.1016/j.molstruc.2012.02.036.Search in Google Scholar
112. Pedireddi, V., Reddy, J. P. Unique homo and hetero carboxylic acid dimer-mediated supramolecular assembly: rational analysis of crystal structure of 3, 5-dinitrobenzoic acid and 4-(N-methylamino) benzoic acid. Tetrahedron Lett. 2002, 43, 4927–4930; https://doi.org/10.1016/s0040-4039(02)00952-8.Search in Google Scholar
113. Metrangolo, P., Neukirch, H., Pilati, T., Resnati, G. Halogen bonding based recognition processes: a world parallel to hydrogen bonding. Accounts Chem. Res. 2005, 38, 386–395; https://doi.org/10.1021/ar0400995.Search in Google Scholar PubMed
114. Shattock, T. R., Arora, K. K., Vishweshwar, P., Zaworotko, M. J. Hierarchy of supramolecular synthons: persistent carboxylic acid·pyridine hydrogen bonds in cocrystals that also contain a hydroxyl moiety. Cryst. Growth Des. 2008, 8, 4533–4545; https://doi.org/10.1021/cg800565a.Search in Google Scholar
115. Biradha, K., Mahata, G. Enclathration of aromatic molecules by the O− H···N supramolecular adducts of racemic-bis-β-naphthol and 4,4’-Bipyridine. Cryst. Growth Des. 2005, 5, 61–63; https://doi.org/10.1021/cg049761u.Search in Google Scholar
116. Khan, E., Khan, U. A., Badshah, A., Tahir, M. N., Altaf, A. A. Supramolecular dithiocarbamatogold (III) complex a potential DNA binder and antioxidant agent. J. Mol. Struct. 2014, 1060, 150–155; https://doi.org/10.1016/j.molstruc.2013.12.023.Search in Google Scholar
117. Variankaval, N., Wenslow, R., Murry, J., Hartman, R., Helmy, R., Kwong, E., Clas, S.-D., Dalton, C., Santos, I. Preparation and solid-state characterization of nonstoichiometric cocrystals of a phosphodiesterase-IV inhibitor and L-tartaric acid. Cryst. Growth Des. 2006, 6, 690–700; https://doi.org/10.1021/cg050462u.Search in Google Scholar
118. Yoo, J., Han, Y.-K., Lee, Y. S., Do, Y. Cocrystallization of a dinuclear platinum complex as a monomer and a one-dimensional polymer. Polyhedron 2002, 21, 715–719; https://doi.org/10.1016/s0277-5387(02)00838-0.Search in Google Scholar
119. Li, X.-H., Yang, S.-Z., Xiang, W.-D., Shi, Q. A novel porous supramolecular complex constructed by the co-crystallization of melamine and sulfate via hydrogen bonds and aromatic π–π interaction. Struct. Chem. 2007, 18, 661–666; https://doi.org/10.1007/s11224-007-9198-2.Search in Google Scholar
120. Lucassen, A. C., Karton, A., Leitus, G., Shimon, L. J., Martin, J. M., van der Boom, M. E. Co-crystallization of sym-triiodo-trifluorobenzene with bipyridyl donors: Consistent Formation of two instead of anticipated three N···I halogen bonds. Cryst. Growth Des. 2007, 7, 386–392; https://doi.org/10.1021/cg0607250.Search in Google Scholar
121. Nygren, C. L., Wilson, C. C., Turner, J. F. Electron and nuclear positions in the short hydrogen bond in urotropine-N-oxide· formic acid. J. Phys. Chem. 2005, 109, 1911–1919; https://doi.org/10.1021/jp047187r.Search in Google Scholar PubMed
122. Li, Z. J., Abramov, Y., Bordner, J., Leonard, J., Medek, A., Trask, A. V. Solid-state acid− base interactions in complexes of heterocyclic bases with dicarboxylic acids: crystallography, hydrogen bond analysis, and 15N NMR spectroscopy. J. Am. Chem. Soc. 2006, 128, 8199–8210; https://doi.org/10.1021/ja0541332.Search in Google Scholar PubMed
123. Arunan, E., Desiraju, G. R., Klein, R. A., Sadlej, J., Scheiner, S., Alkorta, I., Clary, D. C., Crabtree, R. H., Dannenberg, J. J., Hobza, P., Kjaergaard, H. G., Legon, A. C., Mennucci, B., Nesbitt, D. J. Defining the hydrogen bond: an account (IUPAC Technical Report). Pure Appl. Chem. 2011, 83, 1619–1636; https://doi.org/10.1351/pac-rep-10-01-01.Search in Google Scholar
124. Novotný, J., Bazzi, S., Marek, R., Kozelka, J. Lone-pair–π interactions: analysis of the physical origin and biological implications. Phys. Chem. Chem. Phys. 2016, 18, 19472–19481; https://doi.org/10.1039/c6cp01524g.Search in Google Scholar PubMed
125. Poater, J., Fradera, X., Sola, M., Duran, M., Simon, S. On the electron-pair nature of the hydrogen bond in the framework of the atoms in molecules theory. Chem. Phys. Lett. 2003, 369, 248–255; https://doi.org/10.1016/s0009-2614(02)01928-0.Search in Google Scholar
126. Elgabarty, H., Khaliullin, R. Z., Kühne, T. D. Covalency of hydrogen bonds in liquid water can be probed by proton nuclear magnetic resonance experiments. Nat. Commun. 2015, 6, 8318; https://doi.org/10.1038/ncomms9318.Search in Google Scholar PubMed PubMed Central
127. Noguera, M., Sodupe, M., Bertrán, J. Effects of protonation on proton transfer processes in Watson–Crick adenine–thymine base pair. Theor. Chem. Acc. 2007, 118, 113–121; https://doi.org/10.1007/s00214-007-0248-z.Search in Google Scholar
128. Fonseca Guerra, C., Zijlstra, H., Paragi, G., Bickelhaupt, F. M. Telomere structure and stability: covalency in hydrogen bonds, not resonance assistance, causes cooperativity in guanine quartets. Chem. Eur. J. 2011, 17, 12612–12622; https://doi.org/10.1002/chem.201102234.Search in Google Scholar PubMed
129. Sanz, P., Mo, O., Yanez, M., Elguero, J. Resonance-assisted hydrogen bonds: a critical examination. structure and stability of the enols of β-diketones and β-enaminones. J. Phys. Chem. 2007, 111, 3585–3591; https://doi.org/10.1021/jp067514q.Search in Google Scholar PubMed
130. Guillaumes, L., Simon, S., Fonseca Guerra, C. The role of aromaticity, hybridization, electrostatics, and covalency in resonance‐assisted hydrogen bonds of adenine–thymine (AT) base pairs and their mimics. ChemistryOpen 2015, 4, 318–327; https://doi.org/10.1002/open.201402132.Search in Google Scholar PubMed PubMed Central
131. Hujo, W., Grimme, S. Performance of non-local and atom-pairwise dispersion corrections to DFT for structural parameters of molecules with noncovalent interactions. J. Chem. Theor. Comput. 2012, 9, 308–315; https://doi.org/10.1021/ct300813c.Search in Google Scholar PubMed
132. Fonseca Guerra, C., Bickelhaupt, F. M., Baerends, E. J. Orbital interactions in hydrogen bonds important for cohesion in molecular crystals and mismatched pairs of DNA bases. Cryst. Growth Des. 2002, 2, 239–245; https://doi.org/10.1021/cg010034y.Search in Google Scholar
133. Cubo, L., Pizarro, A. M., Quiroga, A. G., Salassa, L., Navarro-Ranninger, C., Sadler, P. J. Photoactivation of trans diamine platinum complexes in aqueous solution and effect on reactivity towards nucleotides. J. Inorg. Biochem. 2010, 104, 909–918; https://doi.org/10.1016/j.jinorgbio.2010.04.009.Search in Google Scholar PubMed PubMed Central
134. van der Lubbe, S. C., Guerra, C. F. Hydrogen‐bond strength of CC and GG pairs determined by steric repulsion: electrostatics and charge transfer overruled. Chem. Eur. J. 2017, 23, 10249–10253; https://doi.org/10.1002/chem.201702441.Search in Google Scholar
135. Gilli, G., Bellucci, F., Ferretti, V., Bertolasi, V. Evidence for resonance-assisted hydrogen bonding from crystal-structure correlations on the enol form of the beta-diketone fragment. J. Am. Chem. Soc. 1989, 111, 1023–1028; https://doi.org/10.1021/ja00185a035.Search in Google Scholar
136. Bučar, D.-K., Day, G. M., Halasz, I., Zhang, G. G., Sander, J. R., Reid, D. G., MacGillivray, L. R., Duer, M. J., Jones, W. The curious case of (caffeine)·(benzoic acid): how heteronuclear seeding allowed the formation of an elusive cocrystal. Chem. Sci. 2013, 4, 4417–4425; https://doi.org/10.1039/c3sc51419f.Search in Google Scholar
137. Williams, J. H. The molecular electric quadrupole moment and solid-state architecture. Accounts Chem. Res. 1993, 26, 593–598; https://doi.org/10.1021/ar00035a005.Search in Google Scholar
138. Kar, P., Biswas, R., Drew, M. G., Frontera, A., Ghosh, A. Host–guest supramolecular interactions in the coordination compounds of 4,4′-azobis (pyridine) with MnX2 (X = NCS–, NCNCN–, and PF6–): structural analyses and theoretical study. Inorg. Chem. 2012, 51, 1837–1851; https://doi.org/10.1021/ic202129a.Search in Google Scholar PubMed
139. Dougherty, D. A. The cation–π interaction. Accounts Chem. Res. 2012, 46, 885–893; https://doi.org/10.1021/ar300265y.Search in Google Scholar PubMed PubMed Central
140. Ma, J. C., Dougherty, D. A. The cation–π interaction. Chem. Rev. 1997, 97, 1303–1324; https://doi.org/10.1021/cr9603744.Search in Google Scholar PubMed
141. Schottel, B. L., Chifotides, H. T., Dunbar, K. R. Anion–π interactions. Chem. Soc. Rev. 2008, 37, 68–83; https://doi.org/10.1039/b614208g.Search in Google Scholar PubMed
142. Harrowfield, J. M., Ogden, M. I., Richmond, W. R., White, A. H. Calixarene-cupped caesium: a coordination conundrums? J. Chem. Soc. Chem. Commun. 1991, 17, 1159–1161; https://doi.org/10.1039/c39910001159.Search in Google Scholar
143. Reddy, A. S., Sastry, G. N. Cation [M=H+, Li+, Na+, K+, Ca2+, Mg2+, NH4+, and NMe4+] interactions with the aromatic motifs of naturally occurring amino acids: a theoretical study. J. Phys. Chem. 2005, 109, 8893–8903; https://doi.org/10.1021/jp0525179.Search in Google Scholar PubMed
144. Reddy, A. S., Sastry, G. M., Sastry, G. N. Cation–aromatic database. Proteins: Struct., Funct., Bioinf. 2007, 67, 1179–1184; https://doi.org/10.1002/prot.21202.Search in Google Scholar PubMed
145. Umadevi, D., Sastry, G. N. Molecular and ionic interaction with graphene nanoflakes: a computational investigation of CO2, H2O, Li, Mg, Li+, and Mg2+ interaction with polycyclic aromatic hydrocarbons. J. Phys. Chem. C 2011, 115, 9656–9667; https://doi.org/10.1021/jp201578p.Search in Google Scholar
146. Mahadevi, A. S., Sastry, G. N. Computational approaches towards modeling finite molecular assemblies: role of cation–π, π–π and hydrogen bonding interactions. In Practical Aspects of Computational Chemistry I; Springer: Dordrecht, 2011; pp. 517–555.10.1007/978-94-007-0919-5_18Search in Google Scholar
147. Vijay, D., Sastry, G. N. The cooperativity of cation–π and π–π interactions. Chem. Phys. Lett. 2010, 485, 235–242; https://doi.org/10.1016/j.cplett.2009.12.012.Search in Google Scholar
148. Reddy, A. S., Vijay, D., Sastry, G. M., Sastry, G. N. From subtle to substantial: role of metal ions on π–π interactions. J. Phys. Chem. B 2006, 110, 2479–2481; https://doi.org/10.1021/jp060018h.Search in Google Scholar PubMed
149. Reddy, A. S., Vijay, D., Sastry, G. M., Sastry, G. N. Reply to “comment on ‘from subtle to substantial: role of metal ions on π–π interactions. J. Phys. Chem. B 2006, 110, 10206–10207; https://doi.org/10.1021/jp0615003.Search in Google Scholar
150. Mahadevi, A. S., Sastry, G. N. Cooperativity in noncovalent interactions. Chem. Rev. 2016, 116, 2775–2825; https://doi.org/10.1021/cr500344e.Search in Google Scholar PubMed
151. Frontera, A., Quiñonero, D., Deyà, P. M. Cation–π and anion–π interactions. Wiley Interdiscip. Rev. Comput. Mol. Sci. 2011, 1, 440–459; https://doi.org/10.1002/wcms.14.Search in Google Scholar
152. Frontera, A., Gamez, P., Mascal, M., Mooibroek, T. J., Reedijk, J. Putting anion–π interactions into perspective. Angew. Chem. Int. Ed. 2011, 50, 9564–9583; https://doi.org/10.1002/anie.201100208.Search in Google Scholar PubMed
153. Rissanen, K. Halogen bonded supramolecular complexes and networks. CrystEngComm 2008, 10, 1107–1113; https://doi.org/10.1039/b803329n.Search in Google Scholar
154. Cavallo, G., Metrangolo, P., Milani, R., Pilati, T., Priimagi, A., Resnati, G., Terraneo, G. The halogen bond. Chem. Rev. 2016, 116, 2478–2601; https://doi.org/10.1021/acs.chemrev.5b00484.Search in Google Scholar PubMed PubMed Central
155. Fleischer, W., Reimer, K. Povidone-iodine in antisepsis–state of the art. Dermatology 1997, 195, 3–9; https://doi.org/10.1159/000246022.Search in Google Scholar PubMed
156. Baldrighi, M., Cavallo, G., Chierotti, M. R., Gobetto, R., Metrangolo, P., Pilati, T., Resnati, G., Terraneo, G. Halogen bonding and pharmaceutical cocrystals: the case of a widely used preservative. Mol. Pharm. 2013, 10, 1760–1772; https://doi.org/10.1021/mp300574j.Search in Google Scholar PubMed
157. Cincic, D., Friščić, T., Jones, W. A stepwise mechanism for the mechanochemical synthesis of halogen-bonded cocrystal architectures. J. Am. Chem. Soc. 2008, 130, 7524–7525; https://doi.org/10.1021/ja801164v.Search in Google Scholar PubMed
158. Meazza, L., Foster, J. A., Fucke, K., Metrangolo, P., Resnati, G., Steed, J. W. Halogen-bonding-triggered supramolecular gel formation. Nat. Chem. 2013, 5, 42; https://doi.org/10.1038/nchem.1496.Search in Google Scholar PubMed
159. Dong, W., Sun, Y.-Q., Yu, B., Zhou, H.-B., Song, H.-B., Liu, Z.-Q., Wang, Q.-M., Liao, D.-Z., Jiang, Z.-H., Yan, S.-P., Cheng, P. Synthesis, crystal structures and luminescent properties of two supramolecular assemblies containing [Au (CN) 2]− building block. New J. Chem. 2004, 28, 1347–1351; https://doi.org/10.1039/b403329a.Search in Google Scholar
160. Schmidbaur, H., Schier, A. Aurophilic interactions as a subject of current research: an up-date. Chem. Soc. Rev. 2012, 41, 370–412; https://doi.org/10.1039/c1cs15182g.Search in Google Scholar PubMed
161. Katz, M. J., Sakai, K., Leznoff, D. B. The use of aurophilic and other metal–metal interactions as crystal engineering design elements to increase structural dimensionality. Chem. Soc. Rev. 2008, 37, 1884–1895; https://doi.org/10.1039/b709061g.Search in Google Scholar PubMed
162. Laguna, A., Lasanta, T., López-de-Luzuriaga, J. M., Monge, M., Naumov, P. e., Olmos, M. E. Combining aurophilic interactions and halogen bonding to control the luminescence from bimetallic gold− silver clusters. J. Am. Chem. Soc. 2009, 132, 456–457; https://doi.org/10.1021/ja909241m.Search in Google Scholar PubMed
163. Codina, A., Fernández, E. J., Jones, P. G., Laguna, A., López-de-Luzuriaga, J. M., Monge, M., Olmos, M. E., Pérez, J., Rodríguez, M. A. Do aurophilic interactions compete against hydrogen bonds? Experimental evidence and rationalization based on ab initio calculations. J. Am. Chem. Soc. 2002, 124, 6781–6786; https://doi.org/10.1021/ja025765g.Search in Google Scholar PubMed
164. Mohr, F., Jennings, M. C., Puddephatt, R. J. Self‐Assembly in gold(I) chemistry: a double‐stranded polymer with interstrand aurophilic interactions. Angew. Chem. Int. Ed. 2004, 43, 969–971; https://doi.org/10.1002/anie.200353127.Search in Google Scholar PubMed
165. McNamara, D. P., Childs, S. L., Giordano, J., Iarriccio, A., Cassidy, J., Shet, M. S., Mannion, R., O’Donnell, E., Park, A. Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API. Pharmaceut. Res. 2006, 23, 1888–1897; https://doi.org/10.1007/s11095-006-9032-3.Search in Google Scholar PubMed
166. Orpen, A. G. Secondary bonding as a potential design tool for crystal engineering. In Crystal Engineering: From Molecules and Crystals to Materials; Springer: Dordrecht, Vol. 538, 1999; pp. 107–127.10.1007/978-94-011-4505-3_7Search in Google Scholar
167. Alcock, N. W., Harrison, W. D. Secondary bonding. Part 8. The crystal and molecular structure of diphenyl telluroxide. J. Chem. Soc., Dalton Trans. 1982, 709–712; https://doi.org/10.1039/dt9820000709.Search in Google Scholar
168. Steed, K. M., Steed, J. W. Packing problems: high Z′ crystal structures and their relationship to cocrystals, inclusion compounds, and polymorphism. Chem. Rev. 2015, 115, 2895–2933; https://doi.org/10.1021/cr500564z.Search in Google Scholar PubMed
169. Herbstein, F., Marsh, R. The crystal structures of trimesic acid, its hydrates and complexes. II. Trimesic acid monohydrate–2/9 picric acid and trimesic acid 5/6 hydrate. Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. 1977, 33, 2358–2367; https://doi.org/10.1107/s0567740877008528.Search in Google Scholar
170. Berry, D. J., Steed, J. W. Pharmaceutical cocrystals, salts and multicomponent systems; intermolecular interactions and property based design. Adv. Drug Deliv. Rev. 2017, 117, 3–24; https://doi.org/10.1016/j.addr.2017.03.003.Search in Google Scholar PubMed
171. Brittain, H. G. HG Brittain. Strategy for the prediction and selection of drug substance salt forms. Pharm. Tech. 2007, 31, 78–88.10.1016/S0099-5428(07)33007-4Search in Google Scholar
172. Saal, C., Becker, A. Pharmaceutical salts: a summary on doses of salt formers from the Orange Book. Eur. J. Pharmaceut. Sci. 2013, 49, 614–623; https://doi.org/10.1016/j.ejps.2013.05.026.Search in Google Scholar PubMed
173. Stahl, P. H., Wermuth, C. G. Pharmaceutical Salts: Properties, Selection and Use; John Wiley & Sons: Weinheim FR Germany, 2002.Search in Google Scholar
174. Javoor, M. G., Mondal, P. K., Chopra, D. Cocrystals: a review of recent trends in pharmaceutical and material science applications. Mater. Sci. Res. India 2017, 14, 09–18; https://doi.org/10.13005/msri/140103.Search in Google Scholar
175. Paul, M., Chakraborty, S., Desiraju, G. R. Six-component molecular solids: ABC [D1–(x+y)E×Fy]2. J. Am. Chem. Soc. 2018, 140, 2309–2315; https://doi.org/10.1021/jacs.7b12501.Search in Google Scholar PubMed
176. Sanphui, P., Rajput, L. Tuning solubility and stability of hydrochlorothiazide co-crystals. Acta Crystallogr. B: Struct. Sci., Cryst. Eng. Mater. 2014, 70, 81–90; https://doi.org/10.1107/s2052520613026917.Search in Google Scholar
177. Rajput, L., Sanphui, P., Desiraju, G. R. New solid forms of the anti-HIV drug etravirine: salts, cocrystals, and solubility. Cryst. Growth Des. 2013, 13, 3681–3690; https://doi.org/10.1021/cg4007058.Search in Google Scholar
178. Tan, D., Loots, L., Friščić, T. Towards medicinal mechanochemistry: evolution of milling from pharmaceutical solid form screening to the synthesis of active pharmaceutical ingredients (APIs). Chem. Commun. 2016, 52, 7760–7781; https://doi.org/10.1039/c6cc02015a.Search in Google Scholar PubMed
179. Hasa, D., Schneider Rauber, G., Voinovich, D., Jones, W. Cocrystal formation through mechanochemistry: from neat and liquid‐assisted grinding to polymer‐assisted grinding. Angew. Chem. Int. Ed. 2015, 54, 7371–7375; https://doi.org/10.1002/ange.201501638.Search in Google Scholar
180. Savjani, J. K. Co‐crystallization: an approach to improve the performance characteristics of active pharmaceutical ingredients. Asian J. Pharm. 2015, 9, 147–151; https://doi.org/10.4103/0973-8398.160309.Search in Google Scholar
181. Horst, J. H. t., Cains, P. W. Co-crystal polymorphs from a solvent-mediated transformation. Cryst. Growth Des. 2008, 8, 2537–2542; https://doi.org/10.1021/cg800183v.Search in Google Scholar
182. Harrison, W. T., Yathirajan, H., Bindya, S., Anilkumar, H., Devaraju Escitalopram oxalate: co-existence of oxalate dianions and oxalic acid molecules in the same crystal. Acta Crystallogr. Sect. C Cryst. Struct. Commun. 2007, 63, o129–o131; https://doi.org/10.1107/s010827010605520x.Search in Google Scholar PubMed
183. Tothadi, S., Desiraju, G. R. Designing ternary cocrystals with hydrogen bonds and halogen bonds. Chem. Commun. 2013, 49, 7791–7793; https://doi.org/10.1039/c3cc43822h.Search in Google Scholar PubMed
184. Dubey, R., Mir, N. A., Desiraju, G. R. Quaternary cocrystals: combinatorial synthetic strategies based on long-range synthon Aufbau modules (LSAM). IUCrJ 2016, 3, 102–107; https://doi.org/10.1107/s2052252515023957.Search in Google Scholar
185. Li, Y.-x., Chen, S.-s., Ren, F. d. Theoretical insights into the structures and mechanical properties of HMX/NQ cocrystal explosives and their complexes, and the influence of molecular ratios on their bonding energies. J. Mol. Model. 2015, 21, 245; https://doi.org/10.1007/s00894-015-2790-2.Search in Google Scholar PubMed
186. Vitthalrao, M. A., Kumar, F. N., Radheshyam, B. Cocrystalization: an alternative approach for solid modification. J. Drug Deliv. Therapeut. 2013, 3, 166–172.10.22270/jddt.v3i4.555Search in Google Scholar
187. Good, D. J., Rodríguez-Hornedo, N. Cocrystal eutectic constants and prediction of solubility behavior. Cryst. Growth Des. 2010, 10, 1028–1032; https://doi.org/10.1021/cg901232h.Search in Google Scholar
188. Alhalaweh, A., Roy, L., Rodríguez-Hornedo, N., Velaga, S. P. pH-dependent solubility of indomethacin–saccharin and carbamazepine–saccharin cocrystals in aqueous media. Mol. Pharm. 2012, 9, 2605–2612; https://doi.org/10.1021/mp300189b.Search in Google Scholar PubMed
189. Babu, N. J., Nangia, A. Solubility advantage of amorphous drugs and pharmaceutical cocrystals. Cryst. Growth Des. 2011, 11, 2662–2679; https://doi.org/10.1021/cg200492w.Search in Google Scholar
190. Pudipeddi, M., Serajuddin, A. T. Trends in solubility of polymorphs. J. Pharmaceut. Sci. 2005, 94, 929–939; https://doi.org/10.1002/jps.20302.Search in Google Scholar PubMed
191. Rahim, S. A., Ab Rahman, F., Nasir, E. N., Ramle, N. A. Carbamazepine co-crystal screening with dicarboxylic acids co-crystal formers. In World Academy of Science, Engineering and Technology, International Science Index 101, International Journal of Environmental, Chemical, Ecological, Geological and Geophysical Engineering Vol. 9, 2015; pp. 425–428.Search in Google Scholar
192. Viertelhaus, M., Hafner, A. Co-crystals and their advantages for APIs with challenging properties. Chim Oggi–Chem Today 2015, 33, 5.Search in Google Scholar
193. Sanjay, A. N., Manohar, S. D., Bhanudas, S. R. Pharmaceutical cocrystallization: a review. J. Adv. Pharm. Educ. Res. 2014, 4.Search in Google Scholar
194. Pienack, N., Bensch, W. In‐situ monitoring of the formation of crystalline solids. Angew. Chem. Int. Ed. 2011, 50, 2014–2034; https://doi.org/10.1002/anie.201001180.Search in Google Scholar PubMed
195. Sekhon, B. Nutraceutical cocrystals: an overview. RGUHS J. Pharm. Sci. 2012, 2, 16–25.Search in Google Scholar
196. Nugrahani, I., Bahari, M. U. The dynamic study of co-crystal formation between anhydrous and monohydrate theophylline with sodium saccharine dihydrate by FTIR. J Chem. Biochem. 2014, 2, 117–137; https://doi.org/10.15640/jcb.v2n2a6.Search in Google Scholar
197. Moradiya, H., Islam, M. T., Woollam, G. R., Slipper, I. J., Halsey, S., Snowden, M. J., Douroumis, D. Continuous cocrystallization for dissolution rate optimization of a poorly water-soluble drug. Cryst. Growth Des. 2013, 14, 189–198; https://doi.org/10.1021/cg401375a.Search in Google Scholar
198. Aakeröy, C. B., Grommet, A. B., Desper, J. Co-crystal screening of diclofenac. Pharmaceutics 2011, 3, 601–614; https://doi.org/10.3390/pharmaceutics3030601.Search in Google Scholar PubMed PubMed Central
199. Hisada, H., Inoue, M., Koide, T., Carriere, J., Heyler, R., Fukami, T. Direct high-resolution imaging of crystalline components in pharmaceutical dosage forms using low-frequency Raman spectroscopy. Org. Process Res. Dev. 2015, 19, 1796–1798; https://doi.org/10.1021/acs.oprd.5b00329.Search in Google Scholar
200. Stoler, E., Warner, J. Non-covalent derivatives: cocrystals and eutectics. Molecules 2015, 20, 14833–14848; https://doi.org/10.3390/molecules200814833.Search in Google Scholar PubMed PubMed Central
201. Lemmerer, A., Govindraju, S., Johnston, M., Motloung, X., Savig, K. L. Co-crystals and molecular salts of carboxylic acid/pyridine complexes: can calculated p K a’s predict proton transfer? A case study of nine complexes. CrystEngComm 2015, 17, 3591–3595; https://doi.org/10.1039/c5ce00102a.Search in Google Scholar
202. Geng, N., Chen, J.-M., Li, Z.-J., Jiang, L., Lu, T.-B. Approach of cocrystallization to improve the solubility and photostability of tranilast. Cryst. Growth Des. 2013, 13, 3546–3553; https://doi.org/10.1021/cg400518w.Search in Google Scholar
203. Sogo, T., Takagi, H. The cocrystallization process of syndiotactic polystyrene with photo-functional molecules revealed by PFR method. J. Photopolym. Sci. Technol. 2011, 24, 349–355; https://doi.org/10.2494/photopolymer.24.349.Search in Google Scholar
204. Kumar, G. S., Seethalakshmi, P., Sumathi, D., Bhuvanesh, N., Kumaresan, S. Syntheses, structural characterization, and DPPH radical scavenging activity of cocrystals of caffeine with 1-and 2-naphthoxyacetic acids. J. Mol. Struct. 2013, 1035, 476–482; https://doi.org/10.1016/j.molstruc.2012.12.022.Search in Google Scholar
205. Moghimi, A., Khavasi, H., Dashtestani, F., Kordestani, D., Behboodi, E., Maddah, B. A cocrystal of caffeine and dipicolinic acid: synthesis, characterization, X-ray crystallography, and solution studies. J. Struct. Chem. 2013, 54, 990–995; https://doi.org/10.1134/s0022476613050247.Search in Google Scholar
206. Sravani, E., Mannava, M. C., Kaur, D., Annapurna, B., Khan, R. A., Suresh, K., Mittapalli, S., Nangia, A., Kumar, B. D. Preclinical bioavailability–bioequivalence and toxico-kinetic profile of stable succinc acid cocrystal of temozolomide. Curr. Sci. 2015, 108, 1097–1106.Search in Google Scholar
207. Kulyukhin, S., Mikheev, N., Kamenskaya, A., Melikhov, I., Rumer, I., Novichenko, V. Cocrystallization of radioiodine compounds from the gas phase. Radiochemistry 2001, 43, 580–585; https://doi.org/10.1023/a:1014807924733.10.1023/A:1014807924733Search in Google Scholar
208. Adir, N., Axelrod, H., Beroza, P., Isaacson, R., Rongey, S., Okamura, M., Feher, G. Co-crystallization and characterization of the photosynthetic reaction center− Cytochrome c 2 complex from rhodobacter sphaeroides. Biochemistry 1996, 35, 2535–2547; https://doi.org/10.1021/bi9522054.Search in Google Scholar PubMed
209. Chow, S. F., Chen, M., Shi, L., Chow, A. H., Sun, C. C. Simultaneously improving the mechanical properties, dissolution performance, and hygroscopicity of ibuprofen and flurbiprofen by cocrystallization with nicotinamide. Pharmaceut. Res. 2012, 29, 1854–1865; https://doi.org/10.1007/s11095-012-0709-5.Search in Google Scholar PubMed
210. SeethaLekshmi, S., Kiran, M. S., Ramamurty, U., Varughese, S. Molecular basis for the mechanical response of sulfa drug crystals. Chem. Eur. J. 2019, 25, 526–537; https://doi.org/10.1002/chem.201803987.Search in Google Scholar PubMed
211. Ahmed, H., Shimpi, M. R., Velaga, S. P. Relationship between mechanical properties and crystal structure in cocrystals and salt of paracetamol. Drug Dev. Ind. Pharm. 2017, 43, 89–97; https://doi.org/10.1080/03639045.2016.1220568.Search in Google Scholar PubMed
212. Liu, S., He, R., Ye, Z., Du, X., Lin, J., Jiang, H., Liu, B., Edgar, J. H. Large-scale growth of high-quality hexagonal boron nitride crystals at atmospheric pressure from an Fe–Cr flux. Cryst. Growth Des. 2017, 17, 4932–4935; https://doi.org/10.1021/acs.cgd.7b00871.Search in Google Scholar
213. Sun, C. C., Hou, H. Improving mechanical properties of caffeine and methyl gallate crystals by cocrystallization. Cryst. Growth Des. 2008, 8, 1575–1579; https://doi.org/10.1021/cg700843s.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Original Papers
- New imidazolium-based ionic liquids for mitigating carbon steel corrosion in acidic condition
- Kinetic studies and conditions optimizations for the removal of direct red 80 dye from wastewater using cotton calyx and iron oxide composite
- Paracetamol and amoxicillin adsorptive removal from aqueous solution using phosphoric acid activated-carbon
- Review Articles
- Cocrystals; basic concepts, properties and formation strategies
- The most popular and effective synthesis processes for Co3O4 nanoparticles and their benefit in preventing corrosion
- Strategies for CO2 capture: positive and negative feature
Articles in the same Issue
- Frontmatter
- Original Papers
- New imidazolium-based ionic liquids for mitigating carbon steel corrosion in acidic condition
- Kinetic studies and conditions optimizations for the removal of direct red 80 dye from wastewater using cotton calyx and iron oxide composite
- Paracetamol and amoxicillin adsorptive removal from aqueous solution using phosphoric acid activated-carbon
- Review Articles
- Cocrystals; basic concepts, properties and formation strategies
- The most popular and effective synthesis processes for Co3O4 nanoparticles and their benefit in preventing corrosion
- Strategies for CO2 capture: positive and negative feature