Kinetics of acid blue 40 dye degradation under solar light in the presence of CuO nanoparticles synthesized using Citrullus lanatus seeds extract
-
Arfa Aslam
, Haq N. Bhatti, Shumaila Fatima
, Hiratul Ain , Sadia Bibi , Sobhy M. Ibrahim and Munawar Iqbal
Abstract
In view of eco-benign nature of green synthesis, in the present investigation, the CuO NPs are prepared using Citrullus lanatus seeds extract and photocatalytic degradation efficiency for Acid Blue 40 (AB-40) was evaluated. The CuO NPs were characterized by XRD (X-ray diffraction), SEM (scanning electron microscopy), EDX (energy dispersive X-ray), and FT-IR (Fourier transform infrared) techniques. The synthesized CuO NPs was in face centered monoclinic crystalline form with particle size in 40–60 nm range. The photocatalytic degradation potential of CuO NPs was assessed for acid blue 40 (AB-40) dye degradation and catalyst dose, concentration of dye, radiation exposure time and pH are considered for dye removal. The CuO NPs exhibited auspicious efficiency, an 84.89% dye removal was attained at optimal conditions and dye degradation followed BMG (Behnajady–Modirshahla–Ghanbery) kinetics model. Results revealed CuO NPs synthesized using C. lanatus seeds extract is photoactive catalyst and green route can be employed for CuO NPs fabrication for photocatalytic applications.
Funding source: King Saud University
Award Identifier / Grant number: RSP-2021/100
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This work was supported by Researchers Supporting Project number (RSP-2021/100), King Saud University, Riyadh, Saudi Arabia.
-
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Shaheen, M., Bhatti, I. A., Ashar, A., Mohsin, M., Nisar, J., Almoneef, M. M., Iqbal, M. J. Z. Phys. Chem. 2021, 235, 1395–1412. https://doi.org/10.1515/zpch-2020-1741.Search in Google Scholar
2. Majid, F., Shahin, A., Ata, S., Bibi, I., Malik, A., Ali, A., Laref, A., Iqbal, M., Nazir, A. Z. Phys. Chem. 2021, 235, 1279–1296. https://doi.org/10.1515/zpch-2020-1751.Search in Google Scholar
3. Noreen, S., Ismail, S., Ibrahim, S. M., Kusuma, H. S., Nazir, A., Yaseen, M., Khan, M. I., Iqbal, M. Z. Phys. Chem. 2020, 235, 1055–1075; https://doi.org/10.1515/zpch-2019-1599.Search in Google Scholar
4. Jamil, A., Bokhari, T. H., Iqbal, M., Zuber, M., Bukhari, I. H. Z. Phys. Chem. 2020, 234, 129–143; https://doi.org/10.1515/zpch-2019-0006.Search in Google Scholar
5. Majid, F., Rauf, J., Ata, S., Bibi, I., Yameen, M., Iqbal, M. Z. Phys. Chem. 2019, 233, 1411–1430; https://doi.org/10.1515/zpch-2018-1305.Search in Google Scholar
6. Kamran, U., Bhatti, H. N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2019, 233, 1325–1349; https://doi.org/10.1515/zpch-2018-1238.Search in Google Scholar
7. Ata, S., Tabassum, A., Bibi, I., Ghafoor, S., Ahad, A., Bhatti, M. A., Islam, A., Rizvi, H., Iqbal, M. Z. Phys. Chem. 2019, 233, 995–1017; https://doi.org/10.1515/zpch-2018-1203.Search in Google Scholar
8. Shafique, A., Bhatti, I., Ashar, A., Mohsin, M., Ahmad, S. A., Nisar, J., Javed, T., Iqbal, M. Desalination Water Treat. 2020, 187, 399–409; https://doi.org/10.5004/dwt.2020.25584.Search in Google Scholar
9. Perveen, R., Shujaat, S., Qureshi, Z., Nawaz, S., Khan, M. I., Iqbal, M. J. Mater. Res. Technol. 2020, 9, 7817–7827; https://doi.org/10.1016/j.jmrt.2020.05.004.Search in Google Scholar
10. Noreen, S., Mustafa, G., Ibrahim, S. M., Naz, S., Iqbal, M., Yaseen, M., Javed, T., Nisar, J. J. Mater. Res. Technol. 2020, 9, 4206–4217; https://doi.org/10.1016/j.jmrt.2020.02.047.Search in Google Scholar
11. Noreen, S., Khalid, U., Ibrahim, S. M., Javed, T., Ghani, A., Naz, S., Iqbal, M. J. Mater. Res. Technol. 2020, 9, 5881–5893; https://doi.org/10.1016/j.jmrt.2020.03.115.Search in Google Scholar
12. Singh, P., Katyal, A., Kalra, R., Chandra, R. Tetrahedron Lett. 2008, 49, 727–730; https://doi.org/10.1016/j.tetlet.2007.11.106.Search in Google Scholar
13. Shammout, M. W., Awwad, A. M. Chem. Int. 2021, 7, 71–78.Search in Google Scholar
14. Amer, M. W., Awwad, A. M. Chem. Int. 2021, 7, 1–8.Search in Google Scholar
15. Awwad, A. M., Amer, M. W., Salem, N. M., Abdeen, A. O. Chem. Int. 2020, 6, 151–159.Search in Google Scholar
16. Awwad, A. M., Amer, M. W. Chem. Int. 2020, 6, 210–217.Search in Google Scholar
17. Al Banna, L. S., Salem, N. M., Jaleel, G. A., Awwad, A. M. Chem. Int. 2020, 6, 137–143.Search in Google Scholar
18. Igwe, O. U., Nwamezie, F. Chem. Int. 2018, 4, 60–66.10.1002/nadc.20184071829Search in Google Scholar
19. Remya, V., Abitha, V., Rajput, P., Rane, A., Dutta, A. Chem. Int. 2017, 3, 165–171.Search in Google Scholar
20. Bibi, I., Nazar, N., Ata, S., Sultan, M., Ali, A., Abbas, A., Jilani, K., Kamal, S., Sarim, F. M., Khan, M. I., Jalal, F., Iqbal, M. J. Mater. Res. Technol. 2019, 8, 6115–6124; https://doi.org/10.1016/j.jmrt.2019.10.006.Search in Google Scholar
21. Mushtaq, M., Sultana, B., Bhatti, H. N., Asghar, M. J. Food Sci. Technol. 2015, 52, 5048–5056; https://doi.org/10.1007/s13197-014-1562-9.Search in Google Scholar PubMed PubMed Central
22. Zamuz, S., Munekata, P. E. S., Gullón, B., Rocchetti, G., Montesano, D., Lorenzo, J. M. Trends Food Sci. Technol. 2021, 111, 208–222; https://doi.org/10.1016/j.tifs.2021.03.002.Search in Google Scholar
23. Sharma, S., Kumar, K., Thakur, N., Chauhan, S., Chauhan, M. S. J. Environ. Chem. Eng. 2021, 9, 105395; https://doi.org/10.1016/j.jece.2021.105395.Search in Google Scholar
24. Khanna, P., Gaikwad, S., Adhyapak, P., Singh, N., Marimuthu, R. Mater. Lett. 2007, 61, 4711–4714; https://doi.org/10.1016/j.matlet.2007.03.014.Search in Google Scholar
25. Iqbal, M., Bhatti, H. N., Younis, S., Rehmat, S., Alwadai, N., Almuqrin, A. H., Iqbal, M. Diam. Relat. Mater. 2021, 108254, 1–9; https://doi.org/10.1016/j.diamond.2021.108254.Search in Google Scholar
26. Iqbal, M., Ahmad, M. Z., Qureshi, K., Bhatti, I. A., Alwadai, N., Kusuma, H. S. Mater. Chem. Phys. 2021, 272, 124968; https://doi.org/10.1016/j.matchemphys.2021.124968.Search in Google Scholar
27. Awwad, A. M., Salem, N. M., Aqarbeh, M. M., Abdulaziz, F. M. Chem. Int. 2020, 6, 42–48.Search in Google Scholar
28. Kausar, A., Bhatti, H. N., Iqbal, M. Z. Phys. Chem. 2021, 235, 281–294; https://doi.org/10.1515/zpch-2019-1418.Search in Google Scholar
29. uz Zaman, Q., Anwar, S., Mehmood, F., Nawaz, R., Masood, N., Nazir, A., Iqbal, M., Nazir, S., Sultan, K. Z. Phys. Chem. 2020, 235, 1041–1053. https://doi.org/10.1515/zpch-2020-1640.Search in Google Scholar
30. Sharif, S., uz Zaman, Q., Hassan, F., Javaid, S., Arif, K., Mansha, M. Z., Ehsan, N., Nazir, S., Gul, R., Iqbal, M. Z. Phys. Chem. 2020, 235, 467–481; https://doi.org/10.1515/zpch-2019-1532.Search in Google Scholar
31. Naveed, R., Bhatti, I. A., Sohail, I., Ashar, A., Ibrahim, S. M., Iqbal, M., Nazir, A. J. Z. Phys. Chem. 2020, 235, 1027–1039.Search in Google Scholar
32. Naveed, R., Bhatti, I. A., Sohail, I., Ashar, A., Ibrahim, S. M., Iqbal, M., Nazir, A. Z. Phys. Chem. 2020, 235, 1–13 https://doi.org/10.1515/zpch-2019-1567.Search in Google Scholar
33. Jamil, A., Bokhari, T. H., Iqbal, M., Bhatti, I. A., Zuber, M., Nisar, J., Masood, N. Z. Phys. Chem. 2020, 234, 279–294; https://doi.org/10.1515/zpch-2019-1384.Search in Google Scholar
34. Iqbal, M., Shar, G. A., Ibrahim, S. M., Iftikhar, S., Asif, M., Khan, M. I., Kusuma, H. S., Yaseen, M., Nazir, A. Z. Phys. Chem. 2020, 235, 1–18 https://doi.org/10.1515/zpch-2019-1562.Search in Google Scholar
35. Hassan, A., Bhatti, H. N., Iqbal, M., Nazir, A. Z. Phys. Chem. 2020, 235, 1–21 https://doi.org/10.1515/zpch-2020-1680.Search in Google Scholar
36. Bhatti, H. N., Iqbal, M., Nazir, A., Ain, H. J. Z. Phys. Chem. 2020, 234, 1803–1817.10.1515/zpch-2018-1313Search in Google Scholar
37. Elsherif, K. M., El-Dali, A., Alkarewi, A. A., Mabrok, A. Chem. Int. 2021, 7, 79–89.Search in Google Scholar
38. Awwad, A. M., Salem, N. M., Amer, M. W., Shammout, M. W. Chem. Int. 2021, 7, 139–144.Search in Google Scholar
39. Abbas, N., Butt, M. T., Ahmad, M. M., Deeba, F., Hussain, N. Chem. Int. 2021, 7, 103–111.Search in Google Scholar
40. Ukpaka, C. P., Lezorghia, S. B., Nwosu, H. Chem. Int. 2020, 6, 160–167.Search in Google Scholar
41. Ukpaka, C. P., Eno, O. N. Chem. Int. 2020, 7, 62–70.Search in Google Scholar
42. Awwad, A. M., Amer, M. W., Al-Aqarbeh, M. M. Chem. Int. 2020, 6, 168–178.Search in Google Scholar
43. Alkherraz, A. M., Ali, A. K., Elsherif, K. M. Chem. Int. 2020, 6, 11–20.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review Article
- X-ray photoemission studies of the interaction of metals and metal ions with DNA
- Original Papers
- Back to the roots: the concepts of force and energy
- Synthesis and inhibitive characteristic of two acryloyl chloride derivatives towards the corrosion of API 5L X52 carbon steel in hydrochloric acid medium
- Binding interaction of benzamide derivatives as inhibitors of DNA gyrase and Sec14p using Molegro Virtual Docker based on binding free energy
- Kinetics of acid blue 40 dye degradation under solar light in the presence of CuO nanoparticles synthesized using Citrullus lanatus seeds extract
Articles in the same Issue
- Frontmatter
- Review Article
- X-ray photoemission studies of the interaction of metals and metal ions with DNA
- Original Papers
- Back to the roots: the concepts of force and energy
- Synthesis and inhibitive characteristic of two acryloyl chloride derivatives towards the corrosion of API 5L X52 carbon steel in hydrochloric acid medium
- Binding interaction of benzamide derivatives as inhibitors of DNA gyrase and Sec14p using Molegro Virtual Docker based on binding free energy
- Kinetics of acid blue 40 dye degradation under solar light in the presence of CuO nanoparticles synthesized using Citrullus lanatus seeds extract