Startseite Extended visible light driven photocatalytic hydrogen generation by electron induction from g-C3N4 nanosheets to ZnO through the proper heterojunction
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Extended visible light driven photocatalytic hydrogen generation by electron induction from g-C3N4 nanosheets to ZnO through the proper heterojunction

  • Amir Zada ORCID logo EMAIL logo , Muhammad Khan , Zahid Hussain , Muhammad Ishaq Ali Shah , Muhammad Ateeq , Mohib Ullah , Nauman Ali , Shabana Shaheen , Humaira Yasmeen , Syed Niaz Ali Shah und Alei Dang EMAIL logo
Veröffentlicht/Copyright: 20. Mai 2021

Abstract

The alarming energy crises has forced the scientific community to work for sustainable energy modules to meet energy requirements. As for this, ZnO/g-C3N4 nanocomposites with proper heterojunction were fabricated by coupling a proper amount of ZnO with 2D graphitic carbon nitride (g-C3N4) nanosheets and the obtained nanocomposites were applied for photocatalytic hydrogen generation from water under visible light illumination (λ > 420 nm). The morphologies and the hydrogen generation performance of fabricated photocatalysts were characterized in detail. Results showed that the optimized 5ZnO/g-C3N4 nanocomposite produced 70 µmol hydrogen gas in 1 h compare to 8 µmol by pure g-C3N4 under identical illumination conditions in the presence of methanol without the addition of cocatalyst. The much improved photoactivities of the nanocomposites were attributed to the enhanced charge separation through the heterojunction as confirmed from photoluminescence study, capacity of the fabricated samples for •OH radical generation and steady state surface photovoltage spectroscopic (SS-SPS) measurements. We believe that this work would help to fabricate low cost and effective visible light driven photocatalyst for energy production.


Corresponding authors: Amir Zada, Department of Chemistry, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan; and Alei Dang, Shaanxi Engineering Laboratory for Graphene New Carbon Materials and Applications, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China, E-mail: (A. Zada), (A. Dang)

Funding source: Natural Science Foundation of China

Award Identifier / Grant number: 51802267

Funding source: Key Industrial Chain Project of Shaanxi Province

Award Identifier / Grant number: 2019ZDLGY16-06

Funding source: Fundamental Research Funds for the Central Universities

Award Identifier / Grant number: 3102019TS0411

Funding source: Science and Technology Plan Project from Xi’an

Award Identifier / Grant number: 2019218314GXRC019CG020-GXYD19.5

Funding source: China Postdoctoral Science Foundation

Award Identifier / Grant number: 2020M673475

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This research was supported by Natural Science Foundation of China (51802267), the Key Industrial Chain Project of Shaanxi Province (2019ZDLGY16-06), the Fundamental Research Funds for the Central Universities (3102019TS0411), the Science and Technology Plan Project from Xi’an (2019218314GXRC019CG020-GXYD19.5) and China Postdoctoral Science Foundation (2020M673475).

  3. Conflict of interest statement: The authors declare no competing interests statement.

References

1. Heimann, M., Ortega, K. F., Behrens, M. Z. Phys. Chem. 2019, 234, 1185; https://doi.org/10.1515/zpch-2019-1477.Suche in Google Scholar

2. Wang, Y., Song, J. Z. Phys. Chem. 2019, 234, 153; https://doi.org/10.1515/zpch-2019-1392.Suche in Google Scholar

3. Shah, S. J., Khan, A., Naz, N., Ismail, A., Zahid, M., Khan, M. S., Awais, Ismail, M., Bakhtiar, S. H., Khan, I., Ahmad, B., Ali, N., Zada, A., Ali, S. Spectrochim. Acta Mol. Biomol. Spectrosc. 2020, 236, 118314; https://doi.org/10.1016/j.saa.2020.118314.Suche in Google Scholar PubMed

4. Bibi, I., Hussain, S., Majid, F., Kamal, S., Ata, S., Sultan, M., Imran Din, M., Iqbal, M., Nazir, A. Z. Phys. Chem. 2019, 233, 1431–1445; https://doi.org/10.1515/zpch-2018-1162.Suche in Google Scholar

5. Yang, F., Chua, X., Sun, J., Zhang, Y., Li, Z., Liu, H., Bai, L., Qu, Y., Jing, L. Chin. Chem. Lett. 2020, 31, 2784–2788; https://doi.org/10.1016/j.cclet.2020.07.033.Suche in Google Scholar

6. Raziq, F., Qu, Y., Humayun, M., Zada, A., Yu, H., Jing, L. Appl. Catal. B Environ. 2017, 201, 486–494; https://doi.org/10.1016/j.apcatb.2016.08.057.Suche in Google Scholar

7. Ali, N., Awais, Kamal, T., Ul-Islam, M., Khan, A., Shah, S. J., Zada, A. Int. J. Biol. Macromol. 2018, 111, 832–838; https://doi.org/10.1016/j.ijbiomac.2018.01.092.Suche in Google Scholar PubMed

8. Madani, S. S., Yangjeh, A. H., Khaneghah, S. A., Chand, H., Krishnan, V., Zada, A. J. Taiwan Inst. Chem. Eng. 2021, 119, 177–186; https://doi.org/10.1016/j.jtice.2021.01.020.Suche in Google Scholar

9. Ali, A., Hussain, Z., Arain, M. B., Shah, N., Mohammad Khan, K., Gulab, H., Zada, A. Spectrochim. Acta Mol. Biomol. Spectrosc. 2016, 153, 374–378; https://doi.org/10.1016/j.saa.2015.07.104.Suche in Google Scholar PubMed

10. Khan, M., Zada, A., Hayat, A., Ali, T., Uddin, I., Hayat, A., Khan, M., Ullah, A., Hussain, A., Li, T., Zhao, T. Int. J. Energy Res. 2021, 1–32; https://doi.org/10.1002/er.6747.Suche in Google Scholar

11. Li, F., Wangyang, P., Zada, A., Humayun, M., Wang, B., Qu, Y. Mater. Res. Bull. 2016, 84, 99–104; https://doi.org/10.1016/j.materresbull.2016.07.032.Suche in Google Scholar

12. Khan, W. A., Arain, M. B., Bibi, H., Tuzen, M., Shah, N., Zada, A. Z. Phys. Chem. 2020; https://doi.org/10.1515/zpch-2020-1761.Suche in Google Scholar

13. Zada, A., Humayun, M., Raziq, F., Zhang, X., Qu, Y., Bai, L., Qin, C., Jing, L., Fu, H. Adv. Energy Mater. 2016, 6, 1601190; https://doi.org/10.1002/aenm.201601190.Suche in Google Scholar

14. Qi, K., Lv, W., Khan, I., Liu, S. Chin. J. Catal. 2020, 41, 114–121; https://doi.org/10.1016/S1872-2067(19)63459-5.Suche in Google Scholar

15. Wang, J., Qin, C., Wang, H., Chu, M., Zada, A., Zhang, X., Li, J., Raziq, F., Qu, Y., Jing, L. Appl. Catal. B Environ. 2018, 221, 459–466; https://doi.org/10.1016/j.apcatb.2017.09.042.Suche in Google Scholar

16. Ali, N., Zada, A., Zahid, M., Ismail, A., Rafiq, M., Riaz, A., Khan, A. J. Chin. Chem. Soc. 2019, 66, 402–408; https://doi.org/10.1002/jccs.201800213.Suche in Google Scholar

17. Hejazi, S., Altomare, M., Schmuki, P. Z. Phys. Chem. 2019, 234, 615–631; https://doi.org/10.1515/zpch-2019-1479.Suche in Google Scholar

18. Neuberger, F., Baranyai, J., Schmidt, T., Cottre, T., Kaiser, B., Jaegermann, W., Schäfer, R. Z. Phys. Chem. 2019, 234, 847–865; https://doi.org/10.1515/zpch-2019-1424.Suche in Google Scholar

19. Kumari, S., Khare, C., Xi, F., Nowak, M., Sliozberg, K., Gutkowski, R., Bassi, P. S., Fiechter, S., Schuhmann, W., Ludwig, A. Z. Phys. Chem. 2019, 234, 867–885; https://doi.org/10.1515/zpch-2019-1462.Suche in Google Scholar

20. Krysiak, O. A., Cichowicz, G., Conzuelo, F., Cyranski, M. K., Augustynski, J. Z. Phys. Chem. 2019, 234, 633–643; https://doi.org/10.1515/zpch-2019-1431.Suche in Google Scholar

21. Zada, A., Muhammad, P., Ahmad, W., Hussain, Z., Ali, S., Khan, M., Khan, Q., Maqbool, M. Adv. Funct. Mater. 2020, 30, 1906744; https://doi.org/10.1002/adfm.201906744.Suche in Google Scholar

22. Ali, W., Ullah, H., Zada, A., Muhammad, W., Ali, S., Shaheen, S., Alamgir, M. K., Ansar, M. Z., Ullah Khan, Z., Bilal, H., Yap, P. S. Sci. Total Environ. 2020, 746, 141291; https://doi.org/10.1016/j.scitotenv.2020.141291.Suche in Google Scholar PubMed

23. Ulpe, A. C., Bauerfeind, K. C. L., Granone, L. I., Arimi, A., Megatif, L., Dillert, R., Warfsmann, S., Taffa, D. H., Wark, M., Bahnemann, D. W., Bredow, T. Z. Phys. Chem. 2019, 234, 719–776; https://doi.org/10.1515/zpch-2019-1449.Suche in Google Scholar

24. Khan, M., Hayat, A., Mane, S. K. B., Li, T., Shaishta, N., Alei, D., Zhao, T. K., Ullah, A., Zada, A., Rehman, A. U., Khan, W. U. Int. J. Hydrogen Energy 2020, 45, 29070–29081; https://doi.org/10.1016/j.ijhydene.2020.07.274.Suche in Google Scholar

25. Qu, Y., Sun, N., Humayun, M., Zada, A., Xie, Y., Tang, J., Jing, L., Fu, H. Sustain. Energy Fuels 2018, 2, 549–552; https://doi.org/10.1039/C7SE00610A.Suche in Google Scholar

26. Xu, B., Zada, A., Wang, G., Qu, Y. Sustain. Energy Fuels 2019, 3, 3363–3369; https://doi.org/10.1039/C9SE00409B.Suche in Google Scholar

27. Qi, K., Liu, S., Qiu, M. Chin. J. Catal. 2018, 39, 867–875; https://doi.org/10.1016/S1872-2067(17)62999-1.Suche in Google Scholar

28. Saeed, M., Ibrahim, M., Muneer, M., Akram, N., Usman, M., Maqbool, I., Adeel, M., Nisar, A. Z. Phys. Chem. 2019, 235, 225–237; https://doi.org/10.1515/zpch-2019-1536.Suche in Google Scholar

29. Ali, D. A., El-Katori, E. E., Kasim, E. A. Z. Phys. Chem. 2019, 235, 239–263; https://doi.org/10.1515/zpch-2019-1518.Suche in Google Scholar

30. Zhang, Z., Gao, Y., Li, P., Qu, B., Mu, Z., Liu, Y., Qu, Y., Kong, D., Chang, Q., Jing, L. Chin. Chem. Lett. 2020, 31, 2725–2729; https://doi.org/10.1016/j.cclet.2020.05.024.Suche in Google Scholar

31. Cottre, T., Welter, K., Ronge, E., Smirnov, V., Finger, F., Jooss, C., Kaiser, B., Jaegermann, W. Z. Phys. Chem. 2020, 234, 1155–1169; https://doi.org/10.1515/zpch-2019-1483.Suche in Google Scholar

32. Raziq, F., Li, C., Humayun, M., Qu, Y., Zada, A., Yu, H., Jing, L. Mater. Res. Bull. 2015, 70, 494–499; https://doi.org/10.1016/j.materresbull.2015.05.018.Suche in Google Scholar

33. Qi, K., Li, Y., Xie, Y., Liu, S., Zheng, K., Chen, Z., Wang, R. Front. Chem. 2019, 7, 91; https://doi.org/10.3389/fchem.2019.00091.Suche in Google Scholar PubMed PubMed Central

34. Chu, X., Qu, Y., Zada, A., Bai, L., Li, Z., Yang, F., Zhao, L., Zhang, G., Sun, X., Yang, Z., Jing, L. Adv. Sci. 2020, 7, 2001543; https://doi.org/10.1002/advs.202001543.Suche in Google Scholar PubMed PubMed Central

35. Qi, K., Xie, Y., Wang, R., Liu, S., Zhao, Z. Appl. Surf. Sci. 2019, 466, 847–853; https://doi.org/10.1016/j.apsusc.2018.10.037.Suche in Google Scholar

36. Hamid, A., Khan, M., Hayat, A., Raza, J., Zada, A., Ullah, A., Raziq, F., Li, T., Hussain, F. Spectrochim. Acta Mol. Biomol. Spectrosc. 2020, 235, 118303; https://doi.org/10.1016/j.saa.2020.118303.Suche in Google Scholar PubMed

37. Khan, M., Hamid, A., Tiehu, L., Zada, A., Attique, F., Ahmad, N., Ullah, A., Hayat, A., Mahmood, I., Hussain, A., Khan, Y., Ahmad, I., Ali, A., Zhao, T. K. Diam. Relat. Mater. 2020, 107, 107897; https://doi.org/10.1016/j.diamond.2020.107897.Suche in Google Scholar

38. Zhao, X., Zhang, J., Wang, B., Zada, A., Humayun, M. Materials 2015, 8, 2043–2053; https://doi.org/10.3390/ma8052043.Suche in Google Scholar

39. Xu, Y., Jiang, S., Yin, W., Sheng, W., Wu, L., Nie, G., Ao, Z. Appl. Surf. Sci. 2020, 501, 144199; https://doi.org/10.1016/j.apsusc.2019.144199.Suche in Google Scholar

40. Ullah, M., Nazir, R., Khan, M., Khan, W., Shah, M., Afridi, S. G., Zada, A. Soil Water Res. 2020, 15, 30–37; https://doi.org/10.17221/212/2018-SWR.Suche in Google Scholar

41. Nazir, R., Khan, M., Rehman, R. U., Shujah, S., Khan, M., Ullah, M., Zada, A., Mahmood, N., Ahmad, I. Soil Water Res. 2020, 15, 166–172; https://doi.org/10.17221/59/2019-SWR.Suche in Google Scholar

42. Ali, A., Hussain, Z., Zahid, M., Qamar, L., Zada, A., Arain, M. B., Salman, S. M., Mohammed Khan, K. Int. J. Environ. Anal. Chem. 2020, 1–16; https://doi.org/10.1080/03067319.2020.1760860.Suche in Google Scholar

43. Raziq, F., Qu, Y., Zhang, X., Humayun, M., Wu, J., Zada, A., Yu, H., Sun, X., Jing, L. J. Phys. Chem. C 2016, 120, 98–107; https://doi.org/10.1021/acs.jpcc.5b10313.Suche in Google Scholar

44. Qi, K., Xing, X., Zada, A., Li, M., Wang, Q., Liu, S., Lin, H., Wang, G. Ceram. Int. 2020, 46, 1494–1502; https://doi.org/10.1016/j.ceramint.2019.09.116.Suche in Google Scholar

45. Yasmeen, H., Zada, A., Liu, S. J. Photochem. Photobiol. Chem. 2019, 380, 111867; https://doi.org/10.1016/j.jphotochem.2019.111867.Suche in Google Scholar

46. Liu, C., Raziq, F., Li, Z., Qu, Y., Zada, A., Jing, L. Chin. J. Catal. 2017, 38, 1072–1078; https://doi.org/10.1016/S1872-2067(17)62850-X.Suche in Google Scholar

47. Zada, A., Qu, Y., Ali, S., Sun, N., Lu, H., Yan, R., Zhang, X., Jing, L. J. Hazard. Mater. 2018, 342, 715–723; https://doi.org/10.1016/j.jhazmat.2017.09.005.Suche in Google Scholar PubMed

48. Qi, K., Zada, A., Yang, Y., Chen, Q., Khataee, A. Res. Chem. Intermed. 2020, 46, 5281–5295; https://doi.org/10.1007/s11164-020-04262-0.Suche in Google Scholar

49. Yasmeen, H., Zada, A., Ali, S., Khan, I., Ali, W., Khan, W., Khan, M., Anwar, N., Ali, A., Flores, A. M. H., Subhan, F. J. Chin. Chem. Soc. 2020, 67, 1611–1617; https://doi.org/10.1002/JCCS.202000205.Suche in Google Scholar

50. Ali, W., Ullah, H., Zada, A., Alamgir, M. K., Muhammad, W., Ahmad, M. J., Nadhman, A. Mater. Chem. Phys. 2018, 213, 259–266; https://doi.org/10.1016/j.matchemphys.2018.04.015.Suche in Google Scholar

51. Ilyas, T., Raziq, F., Ali, S., Zada, A., Ilyas, N., Shah, R., Wang, Y., Qiao, L. Mater. Des. 2021, 204, 109674; https://doi.org/10.1016/j.matdes.2021.109674.Suche in Google Scholar

52. Hamid, A., Khan, M., Hussain, F., Zada, A., Li, T., Alei, D., Ali, A. Z. Phys. Chem. 2021; https://doi.org/10.1515/zpch-2020-1763.Suche in Google Scholar

53. Zafar, Z., Yi, S., Li, J., Li, C., Zhu, Y., Zada, A., Yao, W., Liu, Z., Yue, X. Energy Environ. Mater. 2021; https://doi.org/10.1002/eem2.12171.Suche in Google Scholar

54. Hussain, Z., Zada, A., Hussain, K., Naz, M. Y., Salam, N. M. A., Ibrahim, K. A. Asia Pac. J. Chem. Eng. 2020, 16, e2610; https://doi.org/10.1002/apj.2610.Suche in Google Scholar

55. Zada, A., Khan, M., Qureshi, M. N., Liu, S., Wang, R. Front. Chem. 2020, 7, 941; https://doi.org/10.3389/fchem.2019.00941.Suche in Google Scholar PubMed PubMed Central

56. Zada, A., Ali, N., Ateeq, M., Huerta-Flores, A. M., Hussain, Z., Shaheen, S., Ullah, M., Ali, S., Khan, I., Ali, W., Shah, M. I. A., Khan, W. J. Chin. Chem. Soc. 2020, 67, 983–989; https://doi.org/10.1002/jccs.201900398.Suche in Google Scholar

57. Subhan, F., Aslam, S., Yan, Z., Yaseen, M., Zada, A., Ikram, M. Separ. Purif. Technol. 2021, 265, 118532; https://doi.org/10.1016/j.seppur.2021.118532.Suche in Google Scholar

58. Yasmeen, H., Zada, A., Liu, S. J. Photochem. Photobiol. Chem. 2020, 400, 112681; https://doi.org/10.1016/j.jphotochem.2020.112681.Suche in Google Scholar

59. Naeem, M., Yan, Z., Subhan, F., Ullah, A., Aslam, S., Ibrahim, M., Khan, M., Shah, N., Shams, D. F., Ullah, A., Khan, A., Ullah, S., Zada, A., Inamullah, Haris, M., Khan, A. J. Porous Mater. 2020, 27, 1101–1108; https://doi.org/10.1007/s10934-020-00886-0.Suche in Google Scholar

60. Zada, A., Khan, M., Khan, M. A., Khan, Q., Yangjeh, A. H., Dang, A., Maqbool, M. Environ. Res. 2021, 195, 110742; https://doi.org/10.1016/j.envres.2021.110742.Suche in Google Scholar PubMed

61. Ali, S., Li, Z., Chen, S., Zada, A., Khan, I., Khan, I., Ali, W., Shaheen, S., Qu, Y., Jing, L. Catal. Today 2019, 335, 557–564; https://doi.org/10.1016/j.cattod.2019.03.044.Suche in Google Scholar

62. Xu, M., Zada, A., Yan, R., Li, H., Sun, N., Qu, Y. Phys. Chem. Chem. Phys. 2020, 22, 4526–4532; https://doi.org/10.1039/C9CP05147C.Suche in Google Scholar PubMed

63. Zada, A., Ali, N., Subhan, F., Anwar, N., Shah, M. I. A., Ateeq, M., Hussain, Z., Zaman, K., Khan, M. Prog. Nat. Sci. Mater. Int. 2019, 29, 138–144; https://doi.org/10.1016/j.pnsc.2019.03.004.Suche in Google Scholar

64. Yasmeen, H., Zada, A., Li, W., Xu, M., Liu, S. Mater. Sci. Semicond. Process. 2019, 102, 104598; https://doi.org/10.1016/j.mssp.2019.104598.Suche in Google Scholar

65. Qi, K., Liu, S., Zada, A. J. Taiwan Inst. Chem. Eng. 2020, 109, 111–123; https://doi.org/10.1016/j.jtice.2020.02.012.Suche in Google Scholar

Received: 2020-10-28
Accepted: 2021-05-06
Published Online: 2021-05-20
Published in Print: 2022-01-27

© 2021 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 5.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2020-1778/html
Button zum nach oben scrollen