Extended visible light driven photocatalytic hydrogen generation by electron induction from g-C3N4 nanosheets to ZnO through the proper heterojunction
-
Amir Zada
, Muhammad Khan
Abstract
The alarming energy crises has forced the scientific community to work for sustainable energy modules to meet energy requirements. As for this, ZnO/g-C3N4 nanocomposites with proper heterojunction were fabricated by coupling a proper amount of ZnO with 2D graphitic carbon nitride (g-C3N4) nanosheets and the obtained nanocomposites were applied for photocatalytic hydrogen generation from water under visible light illumination (λ > 420 nm). The morphologies and the hydrogen generation performance of fabricated photocatalysts were characterized in detail. Results showed that the optimized 5ZnO/g-C3N4 nanocomposite produced 70 µmol hydrogen gas in 1 h compare to 8 µmol by pure g-C3N4 under identical illumination conditions in the presence of methanol without the addition of cocatalyst. The much improved photoactivities of the nanocomposites were attributed to the enhanced charge separation through the heterojunction as confirmed from photoluminescence study, capacity of the fabricated samples for •OH radical generation and steady state surface photovoltage spectroscopic (SS-SPS) measurements. We believe that this work would help to fabricate low cost and effective visible light driven photocatalyst for energy production.
Funding source: Natural Science Foundation of China
Award Identifier / Grant number: 51802267
Funding source: Key Industrial Chain Project of Shaanxi Province
Award Identifier / Grant number: 2019ZDLGY16-06
Funding source: Fundamental Research Funds for the Central Universities
Award Identifier / Grant number: 3102019TS0411
Funding source: Science and Technology Plan Project from Xi’an
Award Identifier / Grant number: 2019218314GXRC019CG020-GXYD19.5
Funding source: China Postdoctoral Science Foundation
Award Identifier / Grant number: 2020M673475
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Research funding: This research was supported by Natural Science Foundation of China (51802267), the Key Industrial Chain Project of Shaanxi Province (2019ZDLGY16-06), the Fundamental Research Funds for the Central Universities (3102019TS0411), the Science and Technology Plan Project from Xi’an (2019218314GXRC019CG020-GXYD19.5) and China Postdoctoral Science Foundation (2020M673475).
-
Conflict of interest statement: The authors declare no competing interests statement.
References
1. Heimann, M., Ortega, K. F., Behrens, M. Z. Phys. Chem. 2019, 234, 1185; https://doi.org/10.1515/zpch-2019-1477.Suche in Google Scholar
2. Wang, Y., Song, J. Z. Phys. Chem. 2019, 234, 153; https://doi.org/10.1515/zpch-2019-1392.Suche in Google Scholar
3. Shah, S. J., Khan, A., Naz, N., Ismail, A., Zahid, M., Khan, M. S., Awais, Ismail, M., Bakhtiar, S. H., Khan, I., Ahmad, B., Ali, N., Zada, A., Ali, S. Spectrochim. Acta Mol. Biomol. Spectrosc. 2020, 236, 118314; https://doi.org/10.1016/j.saa.2020.118314.Suche in Google Scholar PubMed
4. Bibi, I., Hussain, S., Majid, F., Kamal, S., Ata, S., Sultan, M., Imran Din, M., Iqbal, M., Nazir, A. Z. Phys. Chem. 2019, 233, 1431–1445; https://doi.org/10.1515/zpch-2018-1162.Suche in Google Scholar
5. Yang, F., Chua, X., Sun, J., Zhang, Y., Li, Z., Liu, H., Bai, L., Qu, Y., Jing, L. Chin. Chem. Lett. 2020, 31, 2784–2788; https://doi.org/10.1016/j.cclet.2020.07.033.Suche in Google Scholar
6. Raziq, F., Qu, Y., Humayun, M., Zada, A., Yu, H., Jing, L. Appl. Catal. B Environ. 2017, 201, 486–494; https://doi.org/10.1016/j.apcatb.2016.08.057.Suche in Google Scholar
7. Ali, N., Awais, Kamal, T., Ul-Islam, M., Khan, A., Shah, S. J., Zada, A. Int. J. Biol. Macromol. 2018, 111, 832–838; https://doi.org/10.1016/j.ijbiomac.2018.01.092.Suche in Google Scholar PubMed
8. Madani, S. S., Yangjeh, A. H., Khaneghah, S. A., Chand, H., Krishnan, V., Zada, A. J. Taiwan Inst. Chem. Eng. 2021, 119, 177–186; https://doi.org/10.1016/j.jtice.2021.01.020.Suche in Google Scholar
9. Ali, A., Hussain, Z., Arain, M. B., Shah, N., Mohammad Khan, K., Gulab, H., Zada, A. Spectrochim. Acta Mol. Biomol. Spectrosc. 2016, 153, 374–378; https://doi.org/10.1016/j.saa.2015.07.104.Suche in Google Scholar PubMed
10. Khan, M., Zada, A., Hayat, A., Ali, T., Uddin, I., Hayat, A., Khan, M., Ullah, A., Hussain, A., Li, T., Zhao, T. Int. J. Energy Res. 2021, 1–32; https://doi.org/10.1002/er.6747.Suche in Google Scholar
11. Li, F., Wangyang, P., Zada, A., Humayun, M., Wang, B., Qu, Y. Mater. Res. Bull. 2016, 84, 99–104; https://doi.org/10.1016/j.materresbull.2016.07.032.Suche in Google Scholar
12. Khan, W. A., Arain, M. B., Bibi, H., Tuzen, M., Shah, N., Zada, A. Z. Phys. Chem. 2020; https://doi.org/10.1515/zpch-2020-1761.Suche in Google Scholar
13. Zada, A., Humayun, M., Raziq, F., Zhang, X., Qu, Y., Bai, L., Qin, C., Jing, L., Fu, H. Adv. Energy Mater. 2016, 6, 1601190; https://doi.org/10.1002/aenm.201601190.Suche in Google Scholar
14. Qi, K., Lv, W., Khan, I., Liu, S. Chin. J. Catal. 2020, 41, 114–121; https://doi.org/10.1016/S1872-2067(19)63459-5.Suche in Google Scholar
15. Wang, J., Qin, C., Wang, H., Chu, M., Zada, A., Zhang, X., Li, J., Raziq, F., Qu, Y., Jing, L. Appl. Catal. B Environ. 2018, 221, 459–466; https://doi.org/10.1016/j.apcatb.2017.09.042.Suche in Google Scholar
16. Ali, N., Zada, A., Zahid, M., Ismail, A., Rafiq, M., Riaz, A., Khan, A. J. Chin. Chem. Soc. 2019, 66, 402–408; https://doi.org/10.1002/jccs.201800213.Suche in Google Scholar
17. Hejazi, S., Altomare, M., Schmuki, P. Z. Phys. Chem. 2019, 234, 615–631; https://doi.org/10.1515/zpch-2019-1479.Suche in Google Scholar
18. Neuberger, F., Baranyai, J., Schmidt, T., Cottre, T., Kaiser, B., Jaegermann, W., Schäfer, R. Z. Phys. Chem. 2019, 234, 847–865; https://doi.org/10.1515/zpch-2019-1424.Suche in Google Scholar
19. Kumari, S., Khare, C., Xi, F., Nowak, M., Sliozberg, K., Gutkowski, R., Bassi, P. S., Fiechter, S., Schuhmann, W., Ludwig, A. Z. Phys. Chem. 2019, 234, 867–885; https://doi.org/10.1515/zpch-2019-1462.Suche in Google Scholar
20. Krysiak, O. A., Cichowicz, G., Conzuelo, F., Cyranski, M. K., Augustynski, J. Z. Phys. Chem. 2019, 234, 633–643; https://doi.org/10.1515/zpch-2019-1431.Suche in Google Scholar
21. Zada, A., Muhammad, P., Ahmad, W., Hussain, Z., Ali, S., Khan, M., Khan, Q., Maqbool, M. Adv. Funct. Mater. 2020, 30, 1906744; https://doi.org/10.1002/adfm.201906744.Suche in Google Scholar
22. Ali, W., Ullah, H., Zada, A., Muhammad, W., Ali, S., Shaheen, S., Alamgir, M. K., Ansar, M. Z., Ullah Khan, Z., Bilal, H., Yap, P. S. Sci. Total Environ. 2020, 746, 141291; https://doi.org/10.1016/j.scitotenv.2020.141291.Suche in Google Scholar PubMed
23. Ulpe, A. C., Bauerfeind, K. C. L., Granone, L. I., Arimi, A., Megatif, L., Dillert, R., Warfsmann, S., Taffa, D. H., Wark, M., Bahnemann, D. W., Bredow, T. Z. Phys. Chem. 2019, 234, 719–776; https://doi.org/10.1515/zpch-2019-1449.Suche in Google Scholar
24. Khan, M., Hayat, A., Mane, S. K. B., Li, T., Shaishta, N., Alei, D., Zhao, T. K., Ullah, A., Zada, A., Rehman, A. U., Khan, W. U. Int. J. Hydrogen Energy 2020, 45, 29070–29081; https://doi.org/10.1016/j.ijhydene.2020.07.274.Suche in Google Scholar
25. Qu, Y., Sun, N., Humayun, M., Zada, A., Xie, Y., Tang, J., Jing, L., Fu, H. Sustain. Energy Fuels 2018, 2, 549–552; https://doi.org/10.1039/C7SE00610A.Suche in Google Scholar
26. Xu, B., Zada, A., Wang, G., Qu, Y. Sustain. Energy Fuels 2019, 3, 3363–3369; https://doi.org/10.1039/C9SE00409B.Suche in Google Scholar
27. Qi, K., Liu, S., Qiu, M. Chin. J. Catal. 2018, 39, 867–875; https://doi.org/10.1016/S1872-2067(17)62999-1.Suche in Google Scholar
28. Saeed, M., Ibrahim, M., Muneer, M., Akram, N., Usman, M., Maqbool, I., Adeel, M., Nisar, A. Z. Phys. Chem. 2019, 235, 225–237; https://doi.org/10.1515/zpch-2019-1536.Suche in Google Scholar
29. Ali, D. A., El-Katori, E. E., Kasim, E. A. Z. Phys. Chem. 2019, 235, 239–263; https://doi.org/10.1515/zpch-2019-1518.Suche in Google Scholar
30. Zhang, Z., Gao, Y., Li, P., Qu, B., Mu, Z., Liu, Y., Qu, Y., Kong, D., Chang, Q., Jing, L. Chin. Chem. Lett. 2020, 31, 2725–2729; https://doi.org/10.1016/j.cclet.2020.05.024.Suche in Google Scholar
31. Cottre, T., Welter, K., Ronge, E., Smirnov, V., Finger, F., Jooss, C., Kaiser, B., Jaegermann, W. Z. Phys. Chem. 2020, 234, 1155–1169; https://doi.org/10.1515/zpch-2019-1483.Suche in Google Scholar
32. Raziq, F., Li, C., Humayun, M., Qu, Y., Zada, A., Yu, H., Jing, L. Mater. Res. Bull. 2015, 70, 494–499; https://doi.org/10.1016/j.materresbull.2015.05.018.Suche in Google Scholar
33. Qi, K., Li, Y., Xie, Y., Liu, S., Zheng, K., Chen, Z., Wang, R. Front. Chem. 2019, 7, 91; https://doi.org/10.3389/fchem.2019.00091.Suche in Google Scholar PubMed PubMed Central
34. Chu, X., Qu, Y., Zada, A., Bai, L., Li, Z., Yang, F., Zhao, L., Zhang, G., Sun, X., Yang, Z., Jing, L. Adv. Sci. 2020, 7, 2001543; https://doi.org/10.1002/advs.202001543.Suche in Google Scholar PubMed PubMed Central
35. Qi, K., Xie, Y., Wang, R., Liu, S., Zhao, Z. Appl. Surf. Sci. 2019, 466, 847–853; https://doi.org/10.1016/j.apsusc.2018.10.037.Suche in Google Scholar
36. Hamid, A., Khan, M., Hayat, A., Raza, J., Zada, A., Ullah, A., Raziq, F., Li, T., Hussain, F. Spectrochim. Acta Mol. Biomol. Spectrosc. 2020, 235, 118303; https://doi.org/10.1016/j.saa.2020.118303.Suche in Google Scholar PubMed
37. Khan, M., Hamid, A., Tiehu, L., Zada, A., Attique, F., Ahmad, N., Ullah, A., Hayat, A., Mahmood, I., Hussain, A., Khan, Y., Ahmad, I., Ali, A., Zhao, T. K. Diam. Relat. Mater. 2020, 107, 107897; https://doi.org/10.1016/j.diamond.2020.107897.Suche in Google Scholar
38. Zhao, X., Zhang, J., Wang, B., Zada, A., Humayun, M. Materials 2015, 8, 2043–2053; https://doi.org/10.3390/ma8052043.Suche in Google Scholar
39. Xu, Y., Jiang, S., Yin, W., Sheng, W., Wu, L., Nie, G., Ao, Z. Appl. Surf. Sci. 2020, 501, 144199; https://doi.org/10.1016/j.apsusc.2019.144199.Suche in Google Scholar
40. Ullah, M., Nazir, R., Khan, M., Khan, W., Shah, M., Afridi, S. G., Zada, A. Soil Water Res. 2020, 15, 30–37; https://doi.org/10.17221/212/2018-SWR.Suche in Google Scholar
41. Nazir, R., Khan, M., Rehman, R. U., Shujah, S., Khan, M., Ullah, M., Zada, A., Mahmood, N., Ahmad, I. Soil Water Res. 2020, 15, 166–172; https://doi.org/10.17221/59/2019-SWR.Suche in Google Scholar
42. Ali, A., Hussain, Z., Zahid, M., Qamar, L., Zada, A., Arain, M. B., Salman, S. M., Mohammed Khan, K. Int. J. Environ. Anal. Chem. 2020, 1–16; https://doi.org/10.1080/03067319.2020.1760860.Suche in Google Scholar
43. Raziq, F., Qu, Y., Zhang, X., Humayun, M., Wu, J., Zada, A., Yu, H., Sun, X., Jing, L. J. Phys. Chem. C 2016, 120, 98–107; https://doi.org/10.1021/acs.jpcc.5b10313.Suche in Google Scholar
44. Qi, K., Xing, X., Zada, A., Li, M., Wang, Q., Liu, S., Lin, H., Wang, G. Ceram. Int. 2020, 46, 1494–1502; https://doi.org/10.1016/j.ceramint.2019.09.116.Suche in Google Scholar
45. Yasmeen, H., Zada, A., Liu, S. J. Photochem. Photobiol. Chem. 2019, 380, 111867; https://doi.org/10.1016/j.jphotochem.2019.111867.Suche in Google Scholar
46. Liu, C., Raziq, F., Li, Z., Qu, Y., Zada, A., Jing, L. Chin. J. Catal. 2017, 38, 1072–1078; https://doi.org/10.1016/S1872-2067(17)62850-X.Suche in Google Scholar
47. Zada, A., Qu, Y., Ali, S., Sun, N., Lu, H., Yan, R., Zhang, X., Jing, L. J. Hazard. Mater. 2018, 342, 715–723; https://doi.org/10.1016/j.jhazmat.2017.09.005.Suche in Google Scholar PubMed
48. Qi, K., Zada, A., Yang, Y., Chen, Q., Khataee, A. Res. Chem. Intermed. 2020, 46, 5281–5295; https://doi.org/10.1007/s11164-020-04262-0.Suche in Google Scholar
49. Yasmeen, H., Zada, A., Ali, S., Khan, I., Ali, W., Khan, W., Khan, M., Anwar, N., Ali, A., Flores, A. M. H., Subhan, F. J. Chin. Chem. Soc. 2020, 67, 1611–1617; https://doi.org/10.1002/JCCS.202000205.Suche in Google Scholar
50. Ali, W., Ullah, H., Zada, A., Alamgir, M. K., Muhammad, W., Ahmad, M. J., Nadhman, A. Mater. Chem. Phys. 2018, 213, 259–266; https://doi.org/10.1016/j.matchemphys.2018.04.015.Suche in Google Scholar
51. Ilyas, T., Raziq, F., Ali, S., Zada, A., Ilyas, N., Shah, R., Wang, Y., Qiao, L. Mater. Des. 2021, 204, 109674; https://doi.org/10.1016/j.matdes.2021.109674.Suche in Google Scholar
52. Hamid, A., Khan, M., Hussain, F., Zada, A., Li, T., Alei, D., Ali, A. Z. Phys. Chem. 2021; https://doi.org/10.1515/zpch-2020-1763.Suche in Google Scholar
53. Zafar, Z., Yi, S., Li, J., Li, C., Zhu, Y., Zada, A., Yao, W., Liu, Z., Yue, X. Energy Environ. Mater. 2021; https://doi.org/10.1002/eem2.12171.Suche in Google Scholar
54. Hussain, Z., Zada, A., Hussain, K., Naz, M. Y., Salam, N. M. A., Ibrahim, K. A. Asia Pac. J. Chem. Eng. 2020, 16, e2610; https://doi.org/10.1002/apj.2610.Suche in Google Scholar
55. Zada, A., Khan, M., Qureshi, M. N., Liu, S., Wang, R. Front. Chem. 2020, 7, 941; https://doi.org/10.3389/fchem.2019.00941.Suche in Google Scholar PubMed PubMed Central
56. Zada, A., Ali, N., Ateeq, M., Huerta-Flores, A. M., Hussain, Z., Shaheen, S., Ullah, M., Ali, S., Khan, I., Ali, W., Shah, M. I. A., Khan, W. J. Chin. Chem. Soc. 2020, 67, 983–989; https://doi.org/10.1002/jccs.201900398.Suche in Google Scholar
57. Subhan, F., Aslam, S., Yan, Z., Yaseen, M., Zada, A., Ikram, M. Separ. Purif. Technol. 2021, 265, 118532; https://doi.org/10.1016/j.seppur.2021.118532.Suche in Google Scholar
58. Yasmeen, H., Zada, A., Liu, S. J. Photochem. Photobiol. Chem. 2020, 400, 112681; https://doi.org/10.1016/j.jphotochem.2020.112681.Suche in Google Scholar
59. Naeem, M., Yan, Z., Subhan, F., Ullah, A., Aslam, S., Ibrahim, M., Khan, M., Shah, N., Shams, D. F., Ullah, A., Khan, A., Ullah, S., Zada, A., Inamullah, Haris, M., Khan, A. J. Porous Mater. 2020, 27, 1101–1108; https://doi.org/10.1007/s10934-020-00886-0.Suche in Google Scholar
60. Zada, A., Khan, M., Khan, M. A., Khan, Q., Yangjeh, A. H., Dang, A., Maqbool, M. Environ. Res. 2021, 195, 110742; https://doi.org/10.1016/j.envres.2021.110742.Suche in Google Scholar PubMed
61. Ali, S., Li, Z., Chen, S., Zada, A., Khan, I., Khan, I., Ali, W., Shaheen, S., Qu, Y., Jing, L. Catal. Today 2019, 335, 557–564; https://doi.org/10.1016/j.cattod.2019.03.044.Suche in Google Scholar
62. Xu, M., Zada, A., Yan, R., Li, H., Sun, N., Qu, Y. Phys. Chem. Chem. Phys. 2020, 22, 4526–4532; https://doi.org/10.1039/C9CP05147C.Suche in Google Scholar PubMed
63. Zada, A., Ali, N., Subhan, F., Anwar, N., Shah, M. I. A., Ateeq, M., Hussain, Z., Zaman, K., Khan, M. Prog. Nat. Sci. Mater. Int. 2019, 29, 138–144; https://doi.org/10.1016/j.pnsc.2019.03.004.Suche in Google Scholar
64. Yasmeen, H., Zada, A., Li, W., Xu, M., Liu, S. Mater. Sci. Semicond. Process. 2019, 102, 104598; https://doi.org/10.1016/j.mssp.2019.104598.Suche in Google Scholar
65. Qi, K., Liu, S., Zada, A. J. Taiwan Inst. Chem. Eng. 2020, 109, 111–123; https://doi.org/10.1016/j.jtice.2020.02.012.Suche in Google Scholar
© 2021 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Efficient adsorption of chlorpyrifos onto modified activated carbon by gamma irradiation; a plausible adsorption mechanism
- Characterization of the UV-Visible absorption spectra of manganese(III) porphyrins with time-dependent density functional theory calculations
- Extended visible light driven photocatalytic hydrogen generation by electron induction from g-C3N4 nanosheets to ZnO through the proper heterojunction
- The use of FCNT/PANI nanocomposites to extend the life of lithium-ion batteries
- Jellyfish-like few-layer graphene nanoflakes: high paramagnetic response alongside increased interlayer interaction
- Multi-functional organic–inorganic hydrogel microspheres as efficient catalytic system for reduction of toxic dyes in aqueous medium
- Aggregation behavior and thermodynamic properties of the mixture of sodium carboxymethyl cellulose and cetyltrimethylammonium bromide in numerous temperatures and mixed solvents
- A comparative study on the performance of photo/sono/peroxone processes for the removal and mineralization of reactive dye red 198 from aquatic environments
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Efficient adsorption of chlorpyrifos onto modified activated carbon by gamma irradiation; a plausible adsorption mechanism
- Characterization of the UV-Visible absorption spectra of manganese(III) porphyrins with time-dependent density functional theory calculations
- Extended visible light driven photocatalytic hydrogen generation by electron induction from g-C3N4 nanosheets to ZnO through the proper heterojunction
- The use of FCNT/PANI nanocomposites to extend the life of lithium-ion batteries
- Jellyfish-like few-layer graphene nanoflakes: high paramagnetic response alongside increased interlayer interaction
- Multi-functional organic–inorganic hydrogel microspheres as efficient catalytic system for reduction of toxic dyes in aqueous medium
- Aggregation behavior and thermodynamic properties of the mixture of sodium carboxymethyl cellulose and cetyltrimethylammonium bromide in numerous temperatures and mixed solvents
- A comparative study on the performance of photo/sono/peroxone processes for the removal and mineralization of reactive dye red 198 from aquatic environments