Startseite Vibrational sum-frequency generation study of molecular structure, sterical constraints and nonlinear optical switching contrast of mixed alkyl-azobenzene self-assembled monolayers
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Vibrational sum-frequency generation study of molecular structure, sterical constraints and nonlinear optical switching contrast of mixed alkyl-azobenzene self-assembled monolayers

  • Saira Riaz und Gernot Friedrichs EMAIL logo
Veröffentlicht/Copyright: 27. Juli 2020

Abstract

Self-assembled monolayers (SAMs) of azobenzene (AB) functionalized alkyl thiols on gold diluted with simple alkyl thiols provide a straightforward way to photochromic surfaces with high and tunable photoswitching efficiency. Trans-cis isomerization of the AB molecule changes the physical properties of the surface, including the nonlinear optical (NLO) response. Vibrational sum-frequency generation (VSFG) spectroscopy as a nonlinear type of laser spectroscopy offers surface- and orientation-sensitive insight into the molecular structure of mixed SAMs. In this study, VSFG as well as ultraviolet-visible (UV/Vis) spectroscopy has been employed to investigate the morphology, molecular structure, and NLO response of mixed SAMs with systematically varied surface composition. Methylazobenzene (MeAB) has been used as the molecular switch with the methyl substituent serving as orientational VSFG marker. Both short-chain and long-chain alkyl thiol co-ligands have been used to gain insight into the interplay between SAM structure and sterical constraints that are known to limit the free switching volume. Underlining the dominating role of sterical effects for controlling photochromic properties, a strong inhibition of the photoswitching efficiency and NLO response has been observed for the SAMs with an alkyl thiol co-ligand long enough to spatially extend into the layer of the MeAB chromophore. Overall, with <12% signal change, the relative NLO switching contrasts remained low in all cases. VSFG spectral trends clearly revealed that the presumably higher photoswitching efficiency upon dilution with the co-ligand is counteracted by a loss of structural order of the chromophore.


Corresponding author: Gernot Friedrichs, Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, Max-Eyth-Str. 1, 24118, Kiel, Germany, E-mail:

Dedicated to Prof. Friedrich Temps on the occasion of his 65th birthday


Acknowledgment

The authors thank Dr. Kristian Laß for many valuable discussions and his deep involvement in the preliminary VSFG studies of AB functionalized Au samples in the framework of the Bachelor theses of Bent Gorgel and Uta-Corinna Stange. Thanks to the anonymous reviewers for many valuable comments and for pointing us to the very promising opportunities of resonantly enhanced SHG experiments. This work is dedicated to Prof. Dr. Friedrich Temps on the occasion of his 65th birthday and acknowledges many years of rewarding collaboration. In particular, we thank him for his continued interest in the progress of this research project.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Deutsche Forschungsgemeinschaft, CRC/SFB 677 “Function by Switching”.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Browne, W. R., Feringa, B. L. Annu. Rev. Phys. Chem. 2009, 60, 407.10.1146/annurev.physchem.040808.090423Suche in Google Scholar PubMed

2. Russew, M. M., Hecht, S. Adv. Mater. 2010, 22, 3348.10.1002/adma.200904102Suche in Google Scholar PubMed

3. Tegeder, P. J. Phys.: Condens. Matter 2012, 24, 394001.10.1088/0953-8984/24/39/394001Suche in Google Scholar PubMed

4. Ichimura, K. Science 2000, 288, 1624.10.1126/science.288.5471.1624Suche in Google Scholar PubMed

5. Pei, X., Fernandes, A., Mathy, B., Laloyaux, X., Nysten, B., Riant, O., Jonas, A. M. Langmuir 2011, 27, 9403.10.1021/la201526uSuche in Google Scholar PubMed

6. Weber, T., Chandrasekaran, V., Stamer, I., Thygesen, M. B., Terfort, A., Lindhorst, T. K. Angew. Chem., Int. Ed. Engl. 2014, 53, 14583.10.1002/anie.201409808Suche in Google Scholar PubMed

7. Wei, T., Zhan, W., Yu, Q., Chen, H. ACS Appl. Mater. Interfaces 2017, 9, 25767.10.1021/acsami.7b06483Suche in Google Scholar PubMed

8. Fast, E., Schlimm, A., Lautenschläger, I., Clausen, K. U., Strunskus, T., Spormann, C., Lindhorst, T. K., Tuczek, F. Chem. Eur. J. 2019, 26, 485.10.1002/chem.201903644Suche in Google Scholar PubMed PubMed Central

9. Schulze, M., Utecht, M., Moldt, T., Przyrembe, D., Gahl, C., Weinelt, M., Saalfrank, P., Tegeder, P. Phys. Chem. Chem. Phys. 2015, 17, 18079.10.1039/C5CP03093ESuche in Google Scholar PubMed

10. Hänsel, M., Barta, C., Rietze, C., Utecht, M., Rück-Braun, K., Saalfrank, P., Tegeder, P. J. Phys. Chem. C 2018, 122, 25555.10.1021/acs.jpcc.8b08212Suche in Google Scholar

11. Tonnelé, C., Champagne, B., Muccioli, L., Castet, F. Phys. Chem. Chem. Phys. 2018, 20, 27658.10.1039/C8CP05843ASuche in Google Scholar

12. Xie, Q., Shao, Z., Zhao, Y., Yang, L., Wu, Q., Xu, W., Li, K., Song, Y., Hou, H. Dyes Pigm. 2019, 170, 107599.10.1016/j.dyepig.2019.107599Suche in Google Scholar

13. Delaire, J. A., Nakatani, K. Chem. Rev. 2000, 100, 1817.10.1021/cr980078mSuche in Google Scholar

14. Feringa, B. L., Brown, W. R., Eds. Molecular Switches; John Wiley & Sons: New York, 2011.10.1002/9783527634408Suche in Google Scholar

15. Siewertsen, R., Neumann, H., Buchheim-Stehn, B., Herges, R., Näther, C., Renth, F., Temps, F. J. Am. Chem. Soc. 2009, 131, 15594.10.1021/ja906547dSuche in Google Scholar

16. Klajn, R. Pure Appl. Chem. 2010, 82, 2247.10.1351/PAC-CON-10-09-04Suche in Google Scholar

17. Bandara, H. M. D., Burdette, S. C. Chem. Soc. Rev. 2012, 41, 1809.10.1039/C1CS15179GSuche in Google Scholar

18. Comstock, M. J., Levy, N., Kirakosian, A., Cho, J., Lauterwasser, F., Harvey, J. H., Strubbe, D. A., Fréchet, J. M. J., Trauner, D., Louie, S. G., Crommie, M. F. Phys. Rev. Lett. 2007, 99.10.1103/PhysRevLett.99.038301Suche in Google Scholar

19. McNellis, E. R., Mercurio, G., Hagen, S., Leyssner, F., Meyer, J., Soubatch, S., Wolf, M., Reuter, K., Tegeder, P., Tautz, F. S. Chem. Phys. Lett. 2010, 499, 247.10.1016/j.cplett.2010.09.051Suche in Google Scholar

20. Wang, R., Iyoda, T., Jiang, L., Tryk, D. A., Hashimoto, K., Fujishima, A. J. Electroanal. Chem. 1997, 438, 213.10.1016/S0022-0728(96)05031-0Suche in Google Scholar

21. Jung, U., Filinova, O., Kuhn, S., Zargarani, D., Bornholdt, C., Herges, R., Magnussen, O. Langmuir 2010, 26, 13913.10.1021/la1015109Suche in Google Scholar PubMed

22. Evans, S. D., Johnson, S. R., Ringsdorf, H., Williams, L. M., Wolf, H. Langmuir 1998, 14, 6436.10.1021/la980450tSuche in Google Scholar

23. Zhang, J., Whitesell, J. K., Fox, M. A. Chem. Mater. 2001, 13, 2323.10.1021/cm000752sSuche in Google Scholar

24. Tamada, K., Akiyama, H., Wei, T. X., Kim, S. A. Langmuir 2003, 19, 2306.10.1021/la0258493Suche in Google Scholar

25. Ito, M., Wei, T. X., Chen, P. L., Akiyama, H., Matsumoto, M., Tamada, K., Yamamoto, Y. J. Mater. Chem. 2005, 15, 478.10.1039/b411121dSuche in Google Scholar

26. Weidner, T., Bretthauer, F., Ballav, N., Motschmann, H., Orendi, H., Bruhn, C., Siemeling, U., Zharnikov, M. Langmuir 2008, 24, 11691.10.1021/la802454wSuche in Google Scholar PubMed

27. Jung, U., Müller, M., Fujimoto, N., Ikeda, K., Uosaki, K., Cornelisse, U., Tucze, F., Bornholdt, C., Zargarani, D., Herges, R., Magnussen, O. J. Colloid Interface Sci. 2010, 341, 366.10.1016/j.jcis.2009.09.040Suche in Google Scholar PubMed

28. Heinemann, N., Grunau, J., Leißner, T., Andreyev, O., Kuhn, S., Jung, U., Zargarani, D., Herges, R., Magnussen, O., Bauer, M. Chem. Phys. 2012, 402, 22.10.1016/j.chemphys.2012.03.025Suche in Google Scholar

29. Jung, U., Schütt, C., Filinova, O., Kubitschke, J., Herges, R., Magnussen, O. J. Phys. Chem. C 2012, 116, 25943.10.1021/jp310451cSuche in Google Scholar

30. Moldt, T., Brete, D., Przyrembel, D., Das, S., Goldman, J. R., Kundu, P. K., Gahl, C., Klajn, R., Weinelt, M. Langmuir 2015, 31, 1048.10.1021/la504291nSuche in Google Scholar PubMed

31. Gahl, C., Schmidt, R., Brete, D., McNellis, E. R., Freyer, W., Carley, R., Reuter, K., Weinelt, M. J. Am. Chem. Soc. 2010, 132, 1831.10.1021/ja903636qSuche in Google Scholar PubMed

32. Han, M., Honda, T., Ishikawa, D., Ito, E., Hara, M., Norikane, Y. J. Mater. Chem. 2011, 21, 4696.10.1039/c0jm03697hSuche in Google Scholar

33. Titov, E., Granucci, G., Götze, J. P., Persico, M., Saalfrank, P. J. Phys. Chem. Lett. 2016, 7, 3591.10.1021/acs.jpclett.6b01401Suche in Google Scholar

34. Cocchi, C., Draxl, C. J. Phys.: Condens. Matter 2017, 29, 394005.10.1088/1361-648X/aa7ca7Suche in Google Scholar

35. Tonnelé, C., Champagne, B., Muccioli, L., Castet, F. Chem. Mater. 2019, 31, 6759.10.1021/acs.chemmater.9b01241Suche in Google Scholar

36. Yu, H., Zhao, J., Wang, Y., Cai, S., Liu, Z. J. Electroanal. Chem. 1997, 438, 221.10.1016/S0022-0728(97)00055-7Suche in Google Scholar

37. Yasuda, S., Nakamura, T., Matsumoto, M., Shigekawa, H. J. Am. Chem. Soc. 2003, 125, 16430.10.1021/ja038233oSuche in Google Scholar PubMed

38. Kumar, A. S., Ye, T., Takami, T., Yu, B. C., Flatt, A. K., Tou, J. M., Weis, P. S. Nano Lett. 2008, 8, 1644.10.1021/nl080323+Suche in Google Scholar PubMed

39. Zheng, Y. B., Payton, J. L., Chung, C. H., Liu, R., Cheunkar, S., Pathem, B. K., Yang, Y., Jensen, L., Weiss, P. S. Nano Lett. 2011, 11, 3447.10.1021/nl2019195Suche in Google Scholar PubMed

40. Valley, D. T., Onstott, M., Malyk, S., Benderskii, A. V. Langmuir 2013, 29, 11623.10.1021/la402144gSuche in Google Scholar PubMed

41. Smith, R., Reed, S. J. Phys. Chem. 2001, 105, 1119.10.1021/jp0035129Suche in Google Scholar

42. Lüssem, B., Müller-Meskamp, L., Karthäuser, S., Waser, R., Homberger, M., Simon, U. Langmuir 2006, 22, 3021.10.1021/la052791uSuche in Google Scholar PubMed

43. Tamada, K., Akiyama, H., Wei, T. X. Langmuir 2002, 18, 5239.10.1021/la0157667Suche in Google Scholar

44. Akiyama, H., Tamada, K., Nagasawa, J., Ab, K., Tamaku, T. J. Phys. Chem. B 2003, 107, 130.10.1021/jp026103gSuche in Google Scholar

45. Kaneta, M., Honda, T., Onda, K., Han, M. New J. Chem. 2017, 41, 1827.10.1039/C6NJ03121HSuche in Google Scholar

46. Shin, K., Shin, E. J. Bull. Korean Chem. Soc. 2008, 29, 1259.10.5012/bkcs.2008.29.6.1259Suche in Google Scholar

47. Köhntopp, A., Dabrowski, A., Malicki, M.,Temps, F. Chem. Comm. 2014, 50, 10105.10.1039/C4CC02250ESuche in Google Scholar

48. Köhntopp, A., Dittner, M., Temps, F. J. Phys. Chem. Lett. 2016, 7, 1088.10.1021/acs.jpclett.6b00102Suche in Google Scholar PubMed

49. Wolf, M., Tegeder, P. Surf. Sci. 2009, 603, 1506.10.1016/j.susc.2008.11.049Suche in Google Scholar

50. Han, M., Ishikawa, D., Honda, T., Ito, E., Hara, M. Chem. Comm. 2010, 46, 3598.10.1039/b921801gSuche in Google Scholar PubMed

51. Ishikawa, D., Ito, E., Han, M., Hara, M. Langmuir 2013, 29, 4622.10.1021/la302552vSuche in Google Scholar PubMed

52. Wagner, S., Leyssner, F., Kördel, C., Zarwell, S., Schmidt, R., Weinelt, M., Rück-Braun, K., Wol, M., Tegeder, P. Phys. Chem. Chem. Phys. 2009, 11, 6242.10.1039/b823330fSuche in Google Scholar PubMed

53. Baisch, B., Raffa, D., Jung, U., Magnussen, O. M., Nicolas, C., Lacour, J., Kubitschke, J., Herges, R. J. Am. Chem. Soc. 2009, 131, 442.10.1021/ja807923fSuche in Google Scholar PubMed

54. Jacob, H., Ulrich, S., Jung, U., Lemke, S., Rusch, T., Schütt, C., Petersen, F., Strunskus, T., Magnussen, O., Herges, R., Tuczek, F. Phys. Chem. Chem. Phys. 2014.Suche in Google Scholar

55. Krekiehn, N. R., Müller, M., Jung, U., Ulrich, S., Herges, R., Magnussen, O. M. Langmuir 2015, 31, 8362.10.1021/acs.langmuir.5b01645Suche in Google Scholar PubMed

56. Wolf, H., Ringsdorf, H., Delamarche, E., Takami, T., Kang, H., Michel, B., Gerber, C., Jaschke, M., Butt, H. J., Bamberg, E. J. Phys. Chem. 1995, 99, 7102.10.1021/j100018a050Suche in Google Scholar

57. Caldwell, W. B., Campbell, D. J., Chen, K., Herr, B. R., Mirkin, C. A., Malik, A., Durbin, M. K., Dutta, P., Huang, K. G. J. Am. Chem. Soc. 1995, 117, 6071.10.1021/ja00127a021Suche in Google Scholar

58. Tamada, K., Nagasawa, J., Nakanishi, F., Abe, K., Ishida, T., Hara, M., Knoll, W. Langmuir 1998, 14, 3264.10.1021/la971348jSuche in Google Scholar

59. Micheletto, R., Yokokawa, M., Schroeder, M., Hobara, D., Ding, Y., Kakiuchi, T. Appl. Surf. Sci. 2004, 228, 265.10.1016/j.apsusc.2004.01.014Suche in Google Scholar

60. Nagahiro, T., Akiyama, H., Hara, M., Tamada, K. J. Electron Spectrosc. Relat. Phenom. 2009, 172, 128.10.1016/j.elspec.2009.02.009Suche in Google Scholar

61. Bain, C. D. Davies, P. B., Ong, T. H., Robert, N. W., Brown, M. A. Langmuir 1991, 7, 1563.10.1021/la00056a003Suche in Google Scholar

62. Bain, C. D. J. Chem. Soc. Faraday Trans. 1995, 91, 1281.10.1039/ft9959101281Suche in Google Scholar

63. Himmelhaus, M., Eisert, F., Buck, M., Grunze, M. J. Phys. Chem. B 2000, 104, 576.10.1021/jp992073eSuche in Google Scholar

64. Buck, M., Himmelhaus, M. J. Vac. Sci. Technol. A 2001, 19, 2717.10.1116/1.1414120Suche in Google Scholar

65. Wang, H. F., Gan, W., Lu, R., Rao, Y., Wu, B. H. Int. Rev. Phys. Chem. 2005, 24, 191.10.1080/01442350500225894Suche in Google Scholar

66. Tyrode, E. and Hedberg, J. J. Phys. Chem. C 2011, 116, 1080.10.1021/jp210013gSuche in Google Scholar

67. Backus, E. H. G., Kuiper, J. M., Engberts, J. B. F. N., Poolman, B., Bonn, M. J. Phys. Chem. B 2011, 115, 2294.10.1021/jp1113619Suche in Google Scholar PubMed

68. Terfort, A. Aust. J. Chem. 2010, 63, 303.10.1071/CH09308Suche in Google Scholar

69. Heimel, G., Romaner, L., Bredas, J. L., Zojer, E. Langmuir 2008, 24, 474.10.1021/la7023814Suche in Google Scholar PubMed

70. Kato, H. S., Noh, J., Hara, M., Kawai, M. J. Phys. Chem. B 2002, 106, 9655.10.1021/jp020968cSuche in Google Scholar

71. Shaporenko, A., Brunnbauer, M., Terfort, A., Johansson, L. S. O., Grunze, M., Zharnikov, M. Langmuir 2005, 21, 4370.10.1021/la040118jSuche in Google Scholar PubMed

72. Klajn, R., Bishop, K. J. M., Grzybowski, B. A. Proc. Nat. Acad. Sci. USA 2007, 104, 10305.10.1073/pnas.0611371104Suche in Google Scholar PubMed PubMed Central

73. Laß, K., Kleber, J., Friedrichs, G. Limnol. Oceanogr.: Methods 2010, 8, 216.10.4319/lom.2010.8.216Suche in Google Scholar

74. Zhu, X. D., Suhr, H., Shen, Y. R. Phys. Rev. B 1987, 35, 3047.10.1103/PhysRevB.35.3047Suche in Google Scholar

75. Lambert, A. G., Davies, P. B., Neivandt, D. J. Appl. Spectr. Rev. 2005, 40, 103.10.1081/ASR-200038326Suche in Google Scholar

76. Wen, Y. C., Zha, S., Liu, X., Yang, S., Guo, P., Shi, G., Fang, H., Shen, Y. R., Tian, C. Phys. Rev. Lett. 2016, 116.10.1103/PhysRevLett.116.016101Suche in Google Scholar PubMed

77. Ohno, P. E., Wang, H. F., Geiger, F. M. Nat. Comm. 2017, 8.10.1038/s41467-017-01088-0Suche in Google Scholar PubMed PubMed Central

78. Gonella, G., Lütgebaucks, C., de Beer, A. G. F., Roke, S. J. Phys. Chem. C 2016, 120, 9165.10.1021/acs.jpcc.5b12453Suche in Google Scholar

79. Stiller, B., Karageorgiev, P., Jüngling, T., Prescher, D., Zetzsche, T., Dietel, R., Knochenhauer, G., Brehmer, L. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 2001, 355, 401.10.1080/10587250108023673Suche in Google Scholar

80. Schuster, S., Füser, M., Asyuda, A., Cyganik, P., Terfort, A., Zharnikov, M. Phys. Chem. Chem. Phys. 2019, 21, 9098.10.1039/C9CP00255CSuche in Google Scholar

81. Vetráková, L., Ladányi, V., Anshori, J. A., Dvořák, P., Wirz, J., Heger, D. Photochem. Photobiol. Sci. 2017, 16, 1749.10.1039/C7PP00314ESuche in Google Scholar PubMed

82. Hommel, E. L., Allen, H. C. Analyst 2003, 128, 750.10.1039/B301032PSuche in Google Scholar

83. Achtyl, J. L., Buchbinder, A. M., Geiger, F. M. J. Phys. Chem. Lett. 2012, 3, 280.10.1021/jz2016796Suche in Google Scholar PubMed

84. Kleber, J., Laß, K., Friedrichs, G. J. Phys. Chem. A 2013, 117, 7863.10.1021/jp404087sSuche in Google Scholar PubMed

85. Wilmshurst, J. K., Bernstein, H. J. Can. J. Chem. 2012, 35, 911.10.1139/v57-123Suche in Google Scholar

86. Lu, X., Spanninga, S. A., Kristalyn, C. B., Chen, Z. Langmuir 2010, 26, 14231.10.1021/la101866vSuche in Google Scholar PubMed

87. Darwish, T. A., Tong, Y., James, M., Hanley, T. L., Peng, Q., Ye, S. Langmuir 2012, 28, 13852.10.1021/la302204fSuche in Google Scholar PubMed

88. Schulze, M., Utecht, M., Hebert, A., Rück-Braun, K., Saalfrank, P., Tegeder, P. J. Phys. Chem. Lett. 2015, 6, 505.10.1021/jz502477mSuche in Google Scholar PubMed

89. Geiger, F. M. Annu. Rev. Phys. Chem. 2009, 60, 61.10.1146/annurev.physchem.59.032607.093651Suche in Google Scholar PubMed

90. Naujok, R. R., Paul, H. J., Corn, R. M. J. Phys. Chem. 1996, 100, 10497.10.1021/jp960558mSuche in Google Scholar

91. Zarwell, S., Rück-Braun, K. Tetrahedron Lett. 2008, 49, 4020.10.1016/j.tetlet.2008.04.086Suche in Google Scholar

Supplementary Material

The online version of this article offers supplementary material https://doi.org/10.1515/jtse-2019-0044.

Received: 2020-02-28
Accepted: 2020-05-04
Published Online: 2020-07-27
Published in Print: 2020-08-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Artikel in diesem Heft

  1. Frontmatter
  2. Preface
  3. Congratulations to Friedrich Temps: a multifaceted career in Physical Chemistry
  4. Time-Resolved Measurements and Master Equation Modelling of the Unimolecular Decomposition of CH3OCH2
  5. Direct Kinetic Measurements and Master Equation Modelling of the Unimolecular Decomposition of Resonantly-Stabilized CH2CHCHC(O)OCH3 Radical and an Upper Limit Determination for CH2CHCHC(O)OCH3 + O2 Reaction
  6. Elevated pressure low-temperature oxidation of linear five-heavy-atom fuels: diethyl ether, n-pentane, and their mixture
  7. Nucleation of soot: experimental assessment of the role of polycyclic aromatic hydrocarbon (PAH) dimers
  8. On the influence of water on urea condensation reactions: a theoretical study
  9. Comparison of detailed reaction mechanisms for homogeneous ammonia combustion
  10. Simplified Representation of Multichannel Thermal Unimolecular Reactions. II. Refined Parametrization of Formaldehyde Dissociation
  11. Cation and Anion Formation in F 1s-Excited SF6-Clusters
  12. Barrier to internal rotation, symmetry and carbonyl reactivity in methyl 3,3,3-trifluoropyruvate
  13. Shock-tube study of the decomposition of octamethylcyclotetrasiloxane and hexamethylcyclotrisiloxane
  14. Vibrational sum-frequency generation study of molecular structure, sterical constraints and nonlinear optical switching contrast of mixed alkyl-azobenzene self-assembled monolayers
  15. Aqueous Contact Ion Pairs of Phosphate Groups with Na+, Ca2+ and Mg2+ – Structural Discrimination by Femtosecond Infrared Spectroscopy and Molecular Dynamics Simulations
  16. Solvent-dependent photochemical dynamics of a phenoxazine-based photoredox catalyst
  17. The geometry relaxation and photodeactivation from the S2 state of dibenzofuran studied by ultrafast spectroscopy
  18. Approaching black-box calculations of pump-probe fragmentation dynamics of polyatomic molecules
  19. Full-Dimensional Photodynamics of Bistable Proton Transfer Switches
  20. Thermal Isomerization of [Co(acac)2(N3)(py)] in Liquid Solution Studied by Time-Resolved Fourier-Transform Infrared Spectroscopy
Heruntergeladen am 6.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2020-1655/html
Button zum nach oben scrollen