Vibrational sum-frequency generation study of molecular structure, sterical constraints and nonlinear optical switching contrast of mixed alkyl-azobenzene self-assembled monolayers
Abstract
Self-assembled monolayers (SAMs) of azobenzene (AB) functionalized alkyl thiols on gold diluted with simple alkyl thiols provide a straightforward way to photochromic surfaces with high and tunable photoswitching efficiency. Trans-cis isomerization of the AB molecule changes the physical properties of the surface, including the nonlinear optical (NLO) response. Vibrational sum-frequency generation (VSFG) spectroscopy as a nonlinear type of laser spectroscopy offers surface- and orientation-sensitive insight into the molecular structure of mixed SAMs. In this study, VSFG as well as ultraviolet-visible (UV/Vis) spectroscopy has been employed to investigate the morphology, molecular structure, and NLO response of mixed SAMs with systematically varied surface composition. Methylazobenzene (MeAB) has been used as the molecular switch with the methyl substituent serving as orientational VSFG marker. Both short-chain and long-chain alkyl thiol co-ligands have been used to gain insight into the interplay between SAM structure and sterical constraints that are known to limit the free switching volume. Underlining the dominating role of sterical effects for controlling photochromic properties, a strong inhibition of the photoswitching efficiency and NLO response has been observed for the SAMs with an alkyl thiol co-ligand long enough to spatially extend into the layer of the MeAB chromophore. Overall, with <12% signal change, the relative NLO switching contrasts remained low in all cases. VSFG spectral trends clearly revealed that the presumably higher photoswitching efficiency upon dilution with the co-ligand is counteracted by a loss of structural order of the chromophore.
Funding source: Deutsche Forschungsgemeinschaft
Acknowledgment
The authors thank Dr. Kristian Laß for many valuable discussions and his deep involvement in the preliminary VSFG studies of AB functionalized Au samples in the framework of the Bachelor theses of Bent Gorgel and Uta-Corinna Stange. Thanks to the anonymous reviewers for many valuable comments and for pointing us to the very promising opportunities of resonantly enhanced SHG experiments. This work is dedicated to Prof. Dr. Friedrich Temps on the occasion of his 65th birthday and acknowledges many years of rewarding collaboration. In particular, we thank him for his continued interest in the progress of this research project.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: Deutsche Forschungsgemeinschaft, CRC/SFB 677 “Function by Switching”.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Browne, W. R., Feringa, B. L. Annu. Rev. Phys. Chem. 2009, 60, 407.10.1146/annurev.physchem.040808.090423Suche in Google Scholar PubMed
2. Russew, M. M., Hecht, S. Adv. Mater. 2010, 22, 3348.10.1002/adma.200904102Suche in Google Scholar PubMed
3. Tegeder, P. J. Phys.: Condens. Matter 2012, 24, 394001.10.1088/0953-8984/24/39/394001Suche in Google Scholar PubMed
4. Ichimura, K. Science 2000, 288, 1624.10.1126/science.288.5471.1624Suche in Google Scholar PubMed
5. Pei, X., Fernandes, A., Mathy, B., Laloyaux, X., Nysten, B., Riant, O., Jonas, A. M. Langmuir 2011, 27, 9403.10.1021/la201526uSuche in Google Scholar PubMed
6. Weber, T., Chandrasekaran, V., Stamer, I., Thygesen, M. B., Terfort, A., Lindhorst, T. K. Angew. Chem., Int. Ed. Engl. 2014, 53, 14583.10.1002/anie.201409808Suche in Google Scholar PubMed
7. Wei, T., Zhan, W., Yu, Q., Chen, H. ACS Appl. Mater. Interfaces 2017, 9, 25767.10.1021/acsami.7b06483Suche in Google Scholar PubMed
8. Fast, E., Schlimm, A., Lautenschläger, I., Clausen, K. U., Strunskus, T., Spormann, C., Lindhorst, T. K., Tuczek, F. Chem. Eur. J. 2019, 26, 485.10.1002/chem.201903644Suche in Google Scholar PubMed PubMed Central
9. Schulze, M., Utecht, M., Moldt, T., Przyrembe, D., Gahl, C., Weinelt, M., Saalfrank, P., Tegeder, P. Phys. Chem. Chem. Phys. 2015, 17, 18079.10.1039/C5CP03093ESuche in Google Scholar PubMed
10. Hänsel, M., Barta, C., Rietze, C., Utecht, M., Rück-Braun, K., Saalfrank, P., Tegeder, P. J. Phys. Chem. C 2018, 122, 25555.10.1021/acs.jpcc.8b08212Suche in Google Scholar
11. Tonnelé, C., Champagne, B., Muccioli, L., Castet, F. Phys. Chem. Chem. Phys. 2018, 20, 27658.10.1039/C8CP05843ASuche in Google Scholar
12. Xie, Q., Shao, Z., Zhao, Y., Yang, L., Wu, Q., Xu, W., Li, K., Song, Y., Hou, H. Dyes Pigm. 2019, 170, 107599.10.1016/j.dyepig.2019.107599Suche in Google Scholar
13. Delaire, J. A., Nakatani, K. Chem. Rev. 2000, 100, 1817.10.1021/cr980078mSuche in Google Scholar
14. Feringa, B. L., Brown, W. R., Eds. Molecular Switches; John Wiley & Sons: New York, 2011.10.1002/9783527634408Suche in Google Scholar
15. Siewertsen, R., Neumann, H., Buchheim-Stehn, B., Herges, R., Näther, C., Renth, F., Temps, F. J. Am. Chem. Soc. 2009, 131, 15594.10.1021/ja906547dSuche in Google Scholar
16. Klajn, R. Pure Appl. Chem. 2010, 82, 2247.10.1351/PAC-CON-10-09-04Suche in Google Scholar
17. Bandara, H. M. D., Burdette, S. C. Chem. Soc. Rev. 2012, 41, 1809.10.1039/C1CS15179GSuche in Google Scholar
18. Comstock, M. J., Levy, N., Kirakosian, A., Cho, J., Lauterwasser, F., Harvey, J. H., Strubbe, D. A., Fréchet, J. M. J., Trauner, D., Louie, S. G., Crommie, M. F. Phys. Rev. Lett. 2007, 99.10.1103/PhysRevLett.99.038301Suche in Google Scholar
19. McNellis, E. R., Mercurio, G., Hagen, S., Leyssner, F., Meyer, J., Soubatch, S., Wolf, M., Reuter, K., Tegeder, P., Tautz, F. S. Chem. Phys. Lett. 2010, 499, 247.10.1016/j.cplett.2010.09.051Suche in Google Scholar
20. Wang, R., Iyoda, T., Jiang, L., Tryk, D. A., Hashimoto, K., Fujishima, A. J. Electroanal. Chem. 1997, 438, 213.10.1016/S0022-0728(96)05031-0Suche in Google Scholar
21. Jung, U., Filinova, O., Kuhn, S., Zargarani, D., Bornholdt, C., Herges, R., Magnussen, O. Langmuir 2010, 26, 13913.10.1021/la1015109Suche in Google Scholar PubMed
22. Evans, S. D., Johnson, S. R., Ringsdorf, H., Williams, L. M., Wolf, H. Langmuir 1998, 14, 6436.10.1021/la980450tSuche in Google Scholar
23. Zhang, J., Whitesell, J. K., Fox, M. A. Chem. Mater. 2001, 13, 2323.10.1021/cm000752sSuche in Google Scholar
24. Tamada, K., Akiyama, H., Wei, T. X., Kim, S. A. Langmuir 2003, 19, 2306.10.1021/la0258493Suche in Google Scholar
25. Ito, M., Wei, T. X., Chen, P. L., Akiyama, H., Matsumoto, M., Tamada, K., Yamamoto, Y. J. Mater. Chem. 2005, 15, 478.10.1039/b411121dSuche in Google Scholar
26. Weidner, T., Bretthauer, F., Ballav, N., Motschmann, H., Orendi, H., Bruhn, C., Siemeling, U., Zharnikov, M. Langmuir 2008, 24, 11691.10.1021/la802454wSuche in Google Scholar PubMed
27. Jung, U., Müller, M., Fujimoto, N., Ikeda, K., Uosaki, K., Cornelisse, U., Tucze, F., Bornholdt, C., Zargarani, D., Herges, R., Magnussen, O. J. Colloid Interface Sci. 2010, 341, 366.10.1016/j.jcis.2009.09.040Suche in Google Scholar PubMed
28. Heinemann, N., Grunau, J., Leißner, T., Andreyev, O., Kuhn, S., Jung, U., Zargarani, D., Herges, R., Magnussen, O., Bauer, M. Chem. Phys. 2012, 402, 22.10.1016/j.chemphys.2012.03.025Suche in Google Scholar
29. Jung, U., Schütt, C., Filinova, O., Kubitschke, J., Herges, R., Magnussen, O. J. Phys. Chem. C 2012, 116, 25943.10.1021/jp310451cSuche in Google Scholar
30. Moldt, T., Brete, D., Przyrembel, D., Das, S., Goldman, J. R., Kundu, P. K., Gahl, C., Klajn, R., Weinelt, M. Langmuir 2015, 31, 1048.10.1021/la504291nSuche in Google Scholar PubMed
31. Gahl, C., Schmidt, R., Brete, D., McNellis, E. R., Freyer, W., Carley, R., Reuter, K., Weinelt, M. J. Am. Chem. Soc. 2010, 132, 1831.10.1021/ja903636qSuche in Google Scholar PubMed
32. Han, M., Honda, T., Ishikawa, D., Ito, E., Hara, M., Norikane, Y. J. Mater. Chem. 2011, 21, 4696.10.1039/c0jm03697hSuche in Google Scholar
33. Titov, E., Granucci, G., Götze, J. P., Persico, M., Saalfrank, P. J. Phys. Chem. Lett. 2016, 7, 3591.10.1021/acs.jpclett.6b01401Suche in Google Scholar
34. Cocchi, C., Draxl, C. J. Phys.: Condens. Matter 2017, 29, 394005.10.1088/1361-648X/aa7ca7Suche in Google Scholar
35. Tonnelé, C., Champagne, B., Muccioli, L., Castet, F. Chem. Mater. 2019, 31, 6759.10.1021/acs.chemmater.9b01241Suche in Google Scholar
36. Yu, H., Zhao, J., Wang, Y., Cai, S., Liu, Z. J. Electroanal. Chem. 1997, 438, 221.10.1016/S0022-0728(97)00055-7Suche in Google Scholar
37. Yasuda, S., Nakamura, T., Matsumoto, M., Shigekawa, H. J. Am. Chem. Soc. 2003, 125, 16430.10.1021/ja038233oSuche in Google Scholar PubMed
38. Kumar, A. S., Ye, T., Takami, T., Yu, B. C., Flatt, A. K., Tou, J. M., Weis, P. S. Nano Lett. 2008, 8, 1644.10.1021/nl080323+Suche in Google Scholar PubMed
39. Zheng, Y. B., Payton, J. L., Chung, C. H., Liu, R., Cheunkar, S., Pathem, B. K., Yang, Y., Jensen, L., Weiss, P. S. Nano Lett. 2011, 11, 3447.10.1021/nl2019195Suche in Google Scholar PubMed
40. Valley, D. T., Onstott, M., Malyk, S., Benderskii, A. V. Langmuir 2013, 29, 11623.10.1021/la402144gSuche in Google Scholar PubMed
41. Smith, R., Reed, S. J. Phys. Chem. 2001, 105, 1119.10.1021/jp0035129Suche in Google Scholar
42. Lüssem, B., Müller-Meskamp, L., Karthäuser, S., Waser, R., Homberger, M., Simon, U. Langmuir 2006, 22, 3021.10.1021/la052791uSuche in Google Scholar PubMed
43. Tamada, K., Akiyama, H., Wei, T. X. Langmuir 2002, 18, 5239.10.1021/la0157667Suche in Google Scholar
44. Akiyama, H., Tamada, K., Nagasawa, J., Ab, K., Tamaku, T. J. Phys. Chem. B 2003, 107, 130.10.1021/jp026103gSuche in Google Scholar
45. Kaneta, M., Honda, T., Onda, K., Han, M. New J. Chem. 2017, 41, 1827.10.1039/C6NJ03121HSuche in Google Scholar
46. Shin, K., Shin, E. J. Bull. Korean Chem. Soc. 2008, 29, 1259.10.5012/bkcs.2008.29.6.1259Suche in Google Scholar
47. Köhntopp, A., Dabrowski, A., Malicki, M.,Temps, F. Chem. Comm. 2014, 50, 10105.10.1039/C4CC02250ESuche in Google Scholar
48. Köhntopp, A., Dittner, M., Temps, F. J. Phys. Chem. Lett. 2016, 7, 1088.10.1021/acs.jpclett.6b00102Suche in Google Scholar PubMed
49. Wolf, M., Tegeder, P. Surf. Sci. 2009, 603, 1506.10.1016/j.susc.2008.11.049Suche in Google Scholar
50. Han, M., Ishikawa, D., Honda, T., Ito, E., Hara, M. Chem. Comm. 2010, 46, 3598.10.1039/b921801gSuche in Google Scholar PubMed
51. Ishikawa, D., Ito, E., Han, M., Hara, M. Langmuir 2013, 29, 4622.10.1021/la302552vSuche in Google Scholar PubMed
52. Wagner, S., Leyssner, F., Kördel, C., Zarwell, S., Schmidt, R., Weinelt, M., Rück-Braun, K., Wol, M., Tegeder, P. Phys. Chem. Chem. Phys. 2009, 11, 6242.10.1039/b823330fSuche in Google Scholar PubMed
53. Baisch, B., Raffa, D., Jung, U., Magnussen, O. M., Nicolas, C., Lacour, J., Kubitschke, J., Herges, R. J. Am. Chem. Soc. 2009, 131, 442.10.1021/ja807923fSuche in Google Scholar PubMed
54. Jacob, H., Ulrich, S., Jung, U., Lemke, S., Rusch, T., Schütt, C., Petersen, F., Strunskus, T., Magnussen, O., Herges, R., Tuczek, F. Phys. Chem. Chem. Phys. 2014.Suche in Google Scholar
55. Krekiehn, N. R., Müller, M., Jung, U., Ulrich, S., Herges, R., Magnussen, O. M. Langmuir 2015, 31, 8362.10.1021/acs.langmuir.5b01645Suche in Google Scholar PubMed
56. Wolf, H., Ringsdorf, H., Delamarche, E., Takami, T., Kang, H., Michel, B., Gerber, C., Jaschke, M., Butt, H. J., Bamberg, E. J. Phys. Chem. 1995, 99, 7102.10.1021/j100018a050Suche in Google Scholar
57. Caldwell, W. B., Campbell, D. J., Chen, K., Herr, B. R., Mirkin, C. A., Malik, A., Durbin, M. K., Dutta, P., Huang, K. G. J. Am. Chem. Soc. 1995, 117, 6071.10.1021/ja00127a021Suche in Google Scholar
58. Tamada, K., Nagasawa, J., Nakanishi, F., Abe, K., Ishida, T., Hara, M., Knoll, W. Langmuir 1998, 14, 3264.10.1021/la971348jSuche in Google Scholar
59. Micheletto, R., Yokokawa, M., Schroeder, M., Hobara, D., Ding, Y., Kakiuchi, T. Appl. Surf. Sci. 2004, 228, 265.10.1016/j.apsusc.2004.01.014Suche in Google Scholar
60. Nagahiro, T., Akiyama, H., Hara, M., Tamada, K. J. Electron Spectrosc. Relat. Phenom. 2009, 172, 128.10.1016/j.elspec.2009.02.009Suche in Google Scholar
61. Bain, C. D. Davies, P. B., Ong, T. H., Robert, N. W., Brown, M. A. Langmuir 1991, 7, 1563.10.1021/la00056a003Suche in Google Scholar
62. Bain, C. D. J. Chem. Soc. Faraday Trans. 1995, 91, 1281.10.1039/ft9959101281Suche in Google Scholar
63. Himmelhaus, M., Eisert, F., Buck, M., Grunze, M. J. Phys. Chem. B 2000, 104, 576.10.1021/jp992073eSuche in Google Scholar
64. Buck, M., Himmelhaus, M. J. Vac. Sci. Technol. A 2001, 19, 2717.10.1116/1.1414120Suche in Google Scholar
65. Wang, H. F., Gan, W., Lu, R., Rao, Y., Wu, B. H. Int. Rev. Phys. Chem. 2005, 24, 191.10.1080/01442350500225894Suche in Google Scholar
66. Tyrode, E. and Hedberg, J. J. Phys. Chem. C 2011, 116, 1080.10.1021/jp210013gSuche in Google Scholar
67. Backus, E. H. G., Kuiper, J. M., Engberts, J. B. F. N., Poolman, B., Bonn, M. J. Phys. Chem. B 2011, 115, 2294.10.1021/jp1113619Suche in Google Scholar PubMed
68. Terfort, A. Aust. J. Chem. 2010, 63, 303.10.1071/CH09308Suche in Google Scholar
69. Heimel, G., Romaner, L., Bredas, J. L., Zojer, E. Langmuir 2008, 24, 474.10.1021/la7023814Suche in Google Scholar PubMed
70. Kato, H. S., Noh, J., Hara, M., Kawai, M. J. Phys. Chem. B 2002, 106, 9655.10.1021/jp020968cSuche in Google Scholar
71. Shaporenko, A., Brunnbauer, M., Terfort, A., Johansson, L. S. O., Grunze, M., Zharnikov, M. Langmuir 2005, 21, 4370.10.1021/la040118jSuche in Google Scholar PubMed
72. Klajn, R., Bishop, K. J. M., Grzybowski, B. A. Proc. Nat. Acad. Sci. USA 2007, 104, 10305.10.1073/pnas.0611371104Suche in Google Scholar PubMed PubMed Central
73. Laß, K., Kleber, J., Friedrichs, G. Limnol. Oceanogr.: Methods 2010, 8, 216.10.4319/lom.2010.8.216Suche in Google Scholar
74. Zhu, X. D., Suhr, H., Shen, Y. R. Phys. Rev. B 1987, 35, 3047.10.1103/PhysRevB.35.3047Suche in Google Scholar
75. Lambert, A. G., Davies, P. B., Neivandt, D. J. Appl. Spectr. Rev. 2005, 40, 103.10.1081/ASR-200038326Suche in Google Scholar
76. Wen, Y. C., Zha, S., Liu, X., Yang, S., Guo, P., Shi, G., Fang, H., Shen, Y. R., Tian, C. Phys. Rev. Lett. 2016, 116.10.1103/PhysRevLett.116.016101Suche in Google Scholar PubMed
77. Ohno, P. E., Wang, H. F., Geiger, F. M. Nat. Comm. 2017, 8.10.1038/s41467-017-01088-0Suche in Google Scholar PubMed PubMed Central
78. Gonella, G., Lütgebaucks, C., de Beer, A. G. F., Roke, S. J. Phys. Chem. C 2016, 120, 9165.10.1021/acs.jpcc.5b12453Suche in Google Scholar
79. Stiller, B., Karageorgiev, P., Jüngling, T., Prescher, D., Zetzsche, T., Dietel, R., Knochenhauer, G., Brehmer, L. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 2001, 355, 401.10.1080/10587250108023673Suche in Google Scholar
80. Schuster, S., Füser, M., Asyuda, A., Cyganik, P., Terfort, A., Zharnikov, M. Phys. Chem. Chem. Phys. 2019, 21, 9098.10.1039/C9CP00255CSuche in Google Scholar
81. Vetráková, L., Ladányi, V., Anshori, J. A., Dvořák, P., Wirz, J., Heger, D. Photochem. Photobiol. Sci. 2017, 16, 1749.10.1039/C7PP00314ESuche in Google Scholar PubMed
82. Hommel, E. L., Allen, H. C. Analyst 2003, 128, 750.10.1039/B301032PSuche in Google Scholar
83. Achtyl, J. L., Buchbinder, A. M., Geiger, F. M. J. Phys. Chem. Lett. 2012, 3, 280.10.1021/jz2016796Suche in Google Scholar PubMed
84. Kleber, J., Laß, K., Friedrichs, G. J. Phys. Chem. A 2013, 117, 7863.10.1021/jp404087sSuche in Google Scholar PubMed
85. Wilmshurst, J. K., Bernstein, H. J. Can. J. Chem. 2012, 35, 911.10.1139/v57-123Suche in Google Scholar
86. Lu, X., Spanninga, S. A., Kristalyn, C. B., Chen, Z. Langmuir 2010, 26, 14231.10.1021/la101866vSuche in Google Scholar PubMed
87. Darwish, T. A., Tong, Y., James, M., Hanley, T. L., Peng, Q., Ye, S. Langmuir 2012, 28, 13852.10.1021/la302204fSuche in Google Scholar PubMed
88. Schulze, M., Utecht, M., Hebert, A., Rück-Braun, K., Saalfrank, P., Tegeder, P. J. Phys. Chem. Lett. 2015, 6, 505.10.1021/jz502477mSuche in Google Scholar PubMed
89. Geiger, F. M. Annu. Rev. Phys. Chem. 2009, 60, 61.10.1146/annurev.physchem.59.032607.093651Suche in Google Scholar PubMed
90. Naujok, R. R., Paul, H. J., Corn, R. M. J. Phys. Chem. 1996, 100, 10497.10.1021/jp960558mSuche in Google Scholar
91. Zarwell, S., Rück-Braun, K. Tetrahedron Lett. 2008, 49, 4020.10.1016/j.tetlet.2008.04.086Suche in Google Scholar
Supplementary Material
The online version of this article offers supplementary material https://doi.org/10.1515/jtse-2019-0044.
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Preface
- Congratulations to Friedrich Temps: a multifaceted career in Physical Chemistry
- Time-Resolved Measurements and Master Equation Modelling of the Unimolecular Decomposition of CH3OCH2
- Direct Kinetic Measurements and Master Equation Modelling of the Unimolecular Decomposition of Resonantly-Stabilized CH2CHCHC(O)OCH3 Radical and an Upper Limit Determination for CH2CHCHC(O)OCH3 + O2 Reaction
- Elevated pressure low-temperature oxidation of linear five-heavy-atom fuels: diethyl ether, n-pentane, and their mixture
- Nucleation of soot: experimental assessment of the role of polycyclic aromatic hydrocarbon (PAH) dimers
- On the influence of water on urea condensation reactions: a theoretical study
- Comparison of detailed reaction mechanisms for homogeneous ammonia combustion
- Simplified Representation of Multichannel Thermal Unimolecular Reactions. II. Refined Parametrization of Formaldehyde Dissociation
- Cation and Anion Formation in F 1s-Excited SF6-Clusters
- Barrier to internal rotation, symmetry and carbonyl reactivity in methyl 3,3,3-trifluoropyruvate
- Shock-tube study of the decomposition of octamethylcyclotetrasiloxane and hexamethylcyclotrisiloxane
- Vibrational sum-frequency generation study of molecular structure, sterical constraints and nonlinear optical switching contrast of mixed alkyl-azobenzene self-assembled monolayers
- Aqueous Contact Ion Pairs of Phosphate Groups with Na+, Ca2+ and Mg2+ – Structural Discrimination by Femtosecond Infrared Spectroscopy and Molecular Dynamics Simulations
- Solvent-dependent photochemical dynamics of a phenoxazine-based photoredox catalyst
- The geometry relaxation and photodeactivation from the S2 state of dibenzofuran studied by ultrafast spectroscopy
- Approaching black-box calculations of pump-probe fragmentation dynamics of polyatomic molecules
- Full-Dimensional Photodynamics of Bistable Proton Transfer Switches
- Thermal Isomerization of [Co(acac)2(N3)(py)] in Liquid Solution Studied by Time-Resolved Fourier-Transform Infrared Spectroscopy
Artikel in diesem Heft
- Frontmatter
- Preface
- Congratulations to Friedrich Temps: a multifaceted career in Physical Chemistry
- Time-Resolved Measurements and Master Equation Modelling of the Unimolecular Decomposition of CH3OCH2
- Direct Kinetic Measurements and Master Equation Modelling of the Unimolecular Decomposition of Resonantly-Stabilized CH2CHCHC(O)OCH3 Radical and an Upper Limit Determination for CH2CHCHC(O)OCH3 + O2 Reaction
- Elevated pressure low-temperature oxidation of linear five-heavy-atom fuels: diethyl ether, n-pentane, and their mixture
- Nucleation of soot: experimental assessment of the role of polycyclic aromatic hydrocarbon (PAH) dimers
- On the influence of water on urea condensation reactions: a theoretical study
- Comparison of detailed reaction mechanisms for homogeneous ammonia combustion
- Simplified Representation of Multichannel Thermal Unimolecular Reactions. II. Refined Parametrization of Formaldehyde Dissociation
- Cation and Anion Formation in F 1s-Excited SF6-Clusters
- Barrier to internal rotation, symmetry and carbonyl reactivity in methyl 3,3,3-trifluoropyruvate
- Shock-tube study of the decomposition of octamethylcyclotetrasiloxane and hexamethylcyclotrisiloxane
- Vibrational sum-frequency generation study of molecular structure, sterical constraints and nonlinear optical switching contrast of mixed alkyl-azobenzene self-assembled monolayers
- Aqueous Contact Ion Pairs of Phosphate Groups with Na+, Ca2+ and Mg2+ – Structural Discrimination by Femtosecond Infrared Spectroscopy and Molecular Dynamics Simulations
- Solvent-dependent photochemical dynamics of a phenoxazine-based photoredox catalyst
- The geometry relaxation and photodeactivation from the S2 state of dibenzofuran studied by ultrafast spectroscopy
- Approaching black-box calculations of pump-probe fragmentation dynamics of polyatomic molecules
- Full-Dimensional Photodynamics of Bistable Proton Transfer Switches
- Thermal Isomerization of [Co(acac)2(N3)(py)] in Liquid Solution Studied by Time-Resolved Fourier-Transform Infrared Spectroscopy