Startseite High-temperature and high-pressure NMR investigations of low viscous fluids confined in mesoporous systems
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

High-temperature and high-pressure NMR investigations of low viscous fluids confined in mesoporous systems

  • Salim Ok EMAIL logo , Julie Sheets , Susan A. Welch , David R. Cole , Marc Berman , Armando Rúa , Steve Greenbaum , Deepansh J. Srivastava und Philip J. Grandinetti
Veröffentlicht/Copyright: 25. August 2020

Abstract

In this contribution, the relaxation and diffusional behaviors of low viscous fluids, water and methanol confined into mesoporous silica and controlled size pore glass were investigated. The engineered porous systems are relevant to geologically important subsurface energy materials. The engineered porous proxies were characterized by Brunauer–Emmett–Teller (BET) surface analyzer, nuclear magnetic resonance (NMR) spectroscopy, and electron microscopy (EM) to determine surface area, pore-wall protonation and morphology of these materials, respectively. The confined behavior of the low viscous fluids was studied by varying pore diameter, fluid-to-solid ratio, temperature, and pressure, and then compared to bulk liquid state. Both relaxation and diffusion behaviors for the confined fluids showed increasing deviation from pure bulk fluids as the fluid-to-solid ratio was decreased, and surface-to-volume ratio (S/V) was varied. Variable pressure deuteron NMR relaxation of confined D2O and confined methanol, deuterated at the hydroxyl or methyl positions, were performed to exploit the sensitivity of the deuteron quadrupole moment to molecular rotation. The methanol results demonstrated greater pressure dependence than those for water only in bulk. The deviations from bulk liquid behavior arise from different reasons such as confinement and the interactions between confined fluid and the nano-pore wall. The results of the present report give insight into the behavior of low viscosity fluid in nano-confined geometries under different state conditions.


Corresponding author: Salim Ok, School of Earth Sciences, The Ohio State University Columbus, Columbus, Ohio43210, USA, E-mail:

Funding source: A.P. Sloan Foundation

Funding source: Department of Energy

Award Identifier / Grant number: DE-SC0006878

Acknowledgment

Support for S. Ok was provided by the A.P. Sloan Foundation sponsored Deep Carbon Observatory. DRC, JS and SW were supported by the Department of Energy, Basic Energy Sciences Geosciences Program under grant DE-SC0006878. The authors are also thankful to the anonymous reviewers for their suggestions at different stages of the manuscript.

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: Support for S. Ok was provided by the A.P. Sloan Foundation sponsored Deep Carbon Observatory. DRC, JS and SW were supported by the Department of Energy, Basic Energy Sciences Geosciences Program under grant DE-SC0006878. The authors are also thankful to the anonymous reviewers for their suggestions at different stages of the manuscript.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Millischuk, A. A., Ladanyi, B. M. J. Chem. Phys. 2014, 141, 18C513. https://doi.org/10.1063/1.4896218.10.1063/1.4896218Suche in Google Scholar

2. Vogel, M. Eur. Phys. J. 2010, 189, 47, https://doi.org/10.1140/epjst/e2010-01309-9.10.1140/epjst/e2010-01309-9Suche in Google Scholar

3. D’Agostino, C., Mitchell, J., Gladden, L. F., Mantle, M. D. J. Phys. Chem. C 2012, 116, 8975, https://doi.org/10.1021/jp2123295.10.1021/jp2123295Suche in Google Scholar

4. Demuth, D., Sattig, M., Steinrucken, E., Weigler, M., Vogel, M. Z. Phys. Chem. 2018, 232, 1059, https://doi.org/10.1515/zpch-2017-1027.10.1515/zpch-2017-1027Suche in Google Scholar

5. Gelb, L. D., Gubbins, K. E., Radhakrishnan, R., Sliwinska-Bartkowiak, M. Rep. Prog. Phys. 1999, 62, 1573, https://doi.org/10.1088/0034-4885/62/12/201.10.1088/0034-4885/62/12/201Suche in Google Scholar

6. Stallmach, F., Graser, A., Karger, J., Krause, C., Jeschke, M., Oberhagemann, U., Spange, S. Micropor. Mesopor. Mat. 2001, 44, 745, https://doi.org/10.1016/s1387-1811(01)00256-6.10.1016/S1387-1811(01)00256-6Suche in Google Scholar

7. Cole, D. R, Mamontov, E., Rother, G. Neutron applications in earth, energy and environmental sciences. In Neutron Scattering Applications and Techniques; Liang, L., Rinaldi, R., Schober, H., Eds. Springer: Boston, 2009; pp. 547–570.10.1007/978-0-387-09416-8_19Suche in Google Scholar

8. Cole, D. R., Herwig, K., Mamontov, E., Larese, L. Z. Rev. Mineral. Geochem. 2006, 63, 313, https://doi.org/10.2138/rmg.2006.63.13.10.2138/rmg.2006.63.13Suche in Google Scholar

9. Webber, B., Dore, J. J. Phys. Condens. Matter 2004, 16, S5449, https://doi.org/10.1088/0953-8984/16/45/009.10.1088/0953-8984/16/45/009Suche in Google Scholar

10. Gautam, S. S., Ok, S., Cole, D. R. Front. Earth Sci. 2017, 5, 49, https://doi.org/10.3389/feart.2017.00043.10.3389/feart.2017.00049Suche in Google Scholar

11. Packer, K. J. Magn. Reson. Imaging 2003, 21, 163, https://doi.org/10.1016/s0730-725x(03)00120-6.10.1016/S0730-725X(03)00120-6Suche in Google Scholar

12. Song, Y.-Q. Cement Concrete Res. 2007, 37, 325, https://doi.org/10.1016/j.cemconres.2006.02.013.10.1016/j.cemconres.2006.02.013Suche in Google Scholar

13. Kittler, W. C., Obruchkov, S., Galvosas, P., Hunter, M. W. J. Magn. Reson. 2014, 247, 42, https://doi.org/10.1016/j.jmr.2014.08.005.10.1016/j.jmr.2014.08.005Suche in Google Scholar PubMed

14. D’Orazio, F., Bhattaharja, S., Halperin, W. P., Gerhardt, R.Phys. Rev. B 1990, 42, 6503, https://doi.org/10.1103/physrevb.42.6503.10.1103/PhysRevB.42.6503Suche in Google Scholar

15. D’Orazio, F., Bhattaharja, S., Halperin, W. P., Eguchi, K., Mizusaki, T. Phys. Rev. B 1990, 42, 9810, https://doi.org/10.1103/physrevb.42.9810.10.1103/PhysRevB.42.9810Suche in Google Scholar PubMed

16. Bhattachrja, S., D’Orazio, F., Tarczon, J. C., Halperin, W. P. J. Am. Ceram. Soc. 1989, 72, 2126. https://doi.org/10.1111/j.1151-2916.1989.tb06043.x.10.1111/j.1151-2916.1989.tb06043.xSuche in Google Scholar

17. Sindorf, D.W., Maciel, G. E. J. Am. Chem. Soc. 1983, 105, 1487, https://doi.org/10.1021/ja00344a012.10.1021/ja00344a012Suche in Google Scholar

18. Brodrecht, M., Kumari, B., Breitzke, H., Gutmann, T., Buntkowsky, G. Z. Phys. Chem. 2018, 232, 1127, https://doi.org/10.1515/zpch-2017-1059.10.1515/zpch-2017-1059Suche in Google Scholar

19. Milischuk, A. A., Ladanyi, B. M. J. Chem. Phys. 2011, 135, 174709, https://doi.org/10.1063/1.3657408.10.1063/1.3657408Suche in Google Scholar PubMed

20. Bianco, V., Franzese, G. Sci. Rep. 2014, 4, 4440–4441, https://doi.org/10.1038/srep04440.10.1038/srep04440Suche in Google Scholar PubMed PubMed Central

21. Paul, D. R. Science 2012, 335, 413, https://doi.org/10.1126/science.1216923.10.1126/science.1216923Suche in Google Scholar PubMed

22. Zhang, Y., Faraone, A., Kamitakahara, W. A., Liu, K. H., Mou, C. Y., Leao, J. B., Chang, S., Chen, S. H. Proc. Natl. Acad. Sci. USA 2011, 108, 12206, https://doi.org/10.1073/pnas.1100238108.10.1073/pnas.1100238108Suche in Google Scholar PubMed PubMed Central

23. Faraudo, J., Bresme, F. Phys. Rev. Lett. 2004, 92, 236102, https://doi.org/10.1103/physrevlett.92.236102.10.1103/PhysRevLett.92.236102Suche in Google Scholar PubMed

24. Zangi, R., Mark, A. E. Phys. Rev. Lett. 2003, 91, 025502, https://doi.org/10.1103/physrevlett.91.025502.10.1103/PhysRevLett.91.025502Suche in Google Scholar PubMed

25. Ruhle, B., Davies, M., Lebold, T., Brauchle, C., Bein, T. ACS Nano 2012, 6, 1948, https://doi.org/10.1021/nn2042835.10.1021/nn2042835Suche in Google Scholar PubMed

26. Zhao, H., Chen, Q., Zhang, S. Micropor. Mesopor. Mater. 2012, 155, 240, https://doi.org/10.1016/j.micromeso.2012.01.019.10.1016/j.micromeso.2012.01.019Suche in Google Scholar

27. Grünberg, B., Emmler, T., Gedat, E., Shenderovich, I., Findenegg, G. H., Limbach, H.-H., Buntkowsky, G. Chem. Eur. J. 2004, 10, 5689, https://doi.org/10.1002/chem.200400351.10.1002/chem.200400351Suche in Google Scholar PubMed

28. Corsaro, C., Maisano, R., Mallamace, D., Dugo, G. Physica A 2013, 392, 596, https://doi.org/10.1016/j.physa.2012.11.008.10.1016/j.physa.2012.11.008Suche in Google Scholar

29. Inlow, R. O., Joesten, M. D., Van Wazer, J. R. J. Phys. Chem. 1975, 79, 2307, http://doi.org10.1021/j100588a016.10.1021/j100588a016Suche in Google Scholar

30. Kleinberg, R. L., Kenyon, W. E., Mitra, P. P. J. Magn. Res. Ser. A 1994, 108, 206, https://doi.org/10.1006/jmra.1994.1112.10.1006/jmra.1994.1112Suche in Google Scholar

31. Versmold, H. Ber. Bunsenges. Phys. Chem. 1980, 84, 168, https://doi.org/10.1002/bbpc.19800840211.10.1002/bbpc.19800840211Suche in Google Scholar

32. Hansen, E.W., Simon, C., Haugsrud, R., Raeder, H., Bredesen, R. J. Phys. Chem. B. 2002, 106, 12396, https://doi.org/10.1021/jp0146420.10.1021/jp0146420Suche in Google Scholar

33. Lang, E., Ludemann, H.-D. Ber. Bunsenges. Phys. Chem. 1980, 84, 462, https://doi.org/10.1002/bbpc.19800840508.10.1002/bbpc.19800840508Suche in Google Scholar

34. Stoch, G., Ylinen, E. E., Punkkinen, M., Petelenz, B., Birczynski, A. Solid State Nucl. Magn. Reson. 2009, 35, 180, https://doi.org/10.1016/j.ssnmr.2008.12.009.10.1016/j.ssnmr.2008.12.009Suche in Google Scholar

35. Lalowicz, Z. T., Stoch, G., Birczynski, A., Punkkinen, M., Ylinen, E. E., Krzystyniak, M., Gora-Marek, K., Datka, J. Solid State Nucl. Magn. Reson. 2012, 45–46, 66, https://doi.org/10.1016/j.ssnmr.2012.07.001.10.1016/j.ssnmr.2012.07.001Suche in Google Scholar

36. Williams, J. C., McDermott, A. E. J. Phys. Chem. B. 1998, 102, 6248, https://doi.org/10.1021/jp971068c.10.1021/jp971068cSuche in Google Scholar

37. Ueda, T., Kurokawa, K., Kawamura, Y., Miyakubo, K., Eguchi, T. J. Phys. Chem. C 2012, 116, 1012, https://doi.org/10.1021/jp209746n.10.1021/jp209746nSuche in Google Scholar

38. Angell, C. A. Science 1995, 267, 1924, https://doi.org/10.1126/science.267.5206.1924.10.1126/science.267.5206.1924Suche in Google Scholar

39. Angell, C. A. J. Non-Cryst. Solids 1991, 131–133, 13, https://doi.org/10.1016/0022-3093(91)90266-9.10.1016/0022-3093(91)90266-9Suche in Google Scholar

40. Bergman, R., Swenson, J. Nature 2000, 403, 283, https://doi.org/10.1038/35002027.10.1038/35002027Suche in Google Scholar PubMed

41. Sattig, M., Reutter, S., Fujara, F., Werner, M., Buntkowsky, G., Vogel, M. Phys. Chem. Chem. Phys. 2014, 16, 19229, https://doi.org/10.1039/c4cp02057j.10.1039/C4CP02057JSuche in Google Scholar

42. Gallegos, D. P., D. M. Smith, C. J. Brinker. J. Coll. Inter. Sci. 1988, 124, 186, https://doi.org/10.1016/0021-9797(88)90339-6.10.1016/0021-9797(88)90339-6Suche in Google Scholar

43. Timur, A. J. Petrol. Technol. 1969, 21, 775, https://doi.org/10.2118/2045-pa.10.2118/2045-PASuche in Google Scholar

44. Koylu, M. Z. Int. J. Sci. Res. 2018, 7, 40. https://doi.org/10.21275/ART20191603.Suche in Google Scholar

45. Osti, N. C., Cote, A., Mamontov, E., Ramirez-Cuesta, A., Wesolowski, D. J., Diallo, S. O. Chem. Phys. 2016, 465–466, 1, https://doi.org/10.1016/j.chemphys.2015.11.008.10.1016/j.chemphys.2015.11.008Suche in Google Scholar

46. Herino, R., Perio, A., Barla, K., Bomchil, G. Mater. Lett. 1984, 2, 519, https://doi.org/10.1016/0167-577x(84)90086-7.10.1016/0167-577X(84)90086-7Suche in Google Scholar

47. Moller, F., Ben Chorin, M., Koch, F. Thin Solid Films 1995, 255, 16, https://doi.org/10.1016/0040-6090(94)05623-l.10.1016/0040-6090(94)05623-LSuche in Google Scholar

48. Hadj, Z. N., Vergnat, M., Delatour, T., Burneau, A., De Donato, P., Barres, O. Thin Solid Films 1995, 255, 228, https://doi.org/10.1016/0040-6090(94)05659-2.10.1016/0040-6090(94)05659-2Suche in Google Scholar

49. Okuchi, T., Cody, G. D., Mao, H.-K., Hemley, R. J. J. Chem. Phys. 2005, 122, 244509, https://doi.org/10.1063/1.1944732.10.1063/1.1944732Suche in Google Scholar PubMed

50. Hakes, M., Zeidler, M. D. Phys. Chem. Chem. Phys. 2002, 4, 5119, https://doi.org/10.1039/b205662n.10.1039/b205662nSuche in Google Scholar

51. Bai, S., Yonker, C. R. J. Phys. Chem. A 1998, 102, 8641, https://doi.org/10.1021/jp981302e.10.1021/jp981302eSuche in Google Scholar

52. Arencibia, A., Taravillo, M., Perez, F.J., Nunez, J., Baonza, V. G. Phys. Rev. Lett. 2002, 89, 195504, https://doi.org/10.1103/physrevlett.89.195504.10.1103/PhysRevLett.89.195504Suche in Google Scholar

53. Czeslik, C., Jonas, J. Chem. Phys. Lett. 1999, 302, 633, https://doi.org/10.1016/s0009-2614(99)00170-0.10.1016/S0009-2614(99)00170-0Suche in Google Scholar

54. Soper, A. K., Ricci, M. A. Phys. Rev. Lett. 2000, 84, 2881, https://doi.org/10.1103/physrevlett.84.2881.10.1103/PhysRevLett.84.2881Suche in Google Scholar

55. Greenbaum, S., Jayakody, J. R. P., Stallworth, P. E., Mananga, E., Zapata-Farrington, J. J. Phys. Chem. B 2004, 108, 4260. https://doi.org/10.1021/jp037621+.10.1021/jp037621+Suche in Google Scholar

56. Gorbaty, Y. E., Bondarenko, G. V., Kalinichev, A. G., Okhulkov, A. V. Mol. Phys. 1999, 96, 1659, https://doi.org/10.1080/00268979909483109.10.1080/00268979909483109Suche in Google Scholar

57. Arnold, M. R., Ludemann, H.-D. Phys. Chem. Chem. Phys. 2002, 4, 1581, https://doi.org/10.1039/b110639m.10.1039/b110639mSuche in Google Scholar

58. Lalowicz, Z. T., Sotch, G., Birczynski, A., Punkkinen, M., Krzystyniak, M., Gora-Marek, K., Datka, J. Solid State Nucl. Magn. Reson. 2010, 37, 91, https://doi.org/10.1016/j.ssnmr.2010.04.004.10.1016/j.ssnmr.2010.04.004Suche in Google Scholar

59. Lee, Y. K., Campbell, J. H., Jonas, J. J. Chem. Phys. 1974, 60, 3537, https://doi.org/10.1063/1.1681571.10.1063/1.1681571Suche in Google Scholar

60. Holz, M., Weingartner, H. J. Magn. Reson. 1991, 92, 115, https://doi.org/10.1016/0022-2364(91)90252-o.10.1016/0022-2364(91)90252-OSuche in Google Scholar

61. Stallmach, F., Karger, J., Krause, C., Jeschke, M., Oberhagemann, U. J. Am. Chem. Soc. 2000, 122, 9237, https://doi.org/10.1021/ja001106x.10.1021/ja001106xSuche in Google Scholar

62. Cotts, R. M. J. Magn. Reson. 1989, 83, 252, https://doi.org/10.1016/0022-2364(89)90189-3.10.1016/0022-2364(89)90189-3Suche in Google Scholar

63. Lim, D.-W., Sadakiyo, M., Kitagawa, H. Chem. Sci. 2019, 10, 16, https://doi.org/10.1039/c8sc04475a.10.1039/C8SC04475ASuche in Google Scholar

64. Degat, E., Schreiber, A., Findenegg, G., Shenderovich, I., Limbach, H.-H., Buntkowsky, G. Magn. Reson. Chem. 2001, 39, S149. https://doi.org/10.1002/mrc.932.10.1002/mrc.932Suche in Google Scholar

65. Buntkowsky, G., Breitzke, H., Adamczyk, A., Roelofs, F., Emmler, T., Gedat, E., Grünberg, B., Xu, Y., Limbach, H.-H., Shenderovich, I., Vyalikh, A., Findenegg, G. Phys. Chem. Chem. Phys. 2007, 9, 4843, https://doi.org/10.1039/b707322d.10.1039/b707322dSuche in Google Scholar PubMed

Supplementary Material

Supplementary Material to this article can be found online at (https://doi.org/10.1515/ZPCH-2019-1510).

Received: 2019-07-02
Accepted: 2020-06-23
Published Online: 2020-08-25
Published in Print: 2021-07-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 7.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2019-1510/html
Button zum nach oben scrollen