High-temperature and high-pressure NMR investigations of low viscous fluids confined in mesoporous systems
-
Salim Ok
, Julie Sheets
Abstract
In this contribution, the relaxation and diffusional behaviors of low viscous fluids, water and methanol confined into mesoporous silica and controlled size pore glass were investigated. The engineered porous systems are relevant to geologically important subsurface energy materials. The engineered porous proxies were characterized by Brunauer–Emmett–Teller (BET) surface analyzer, nuclear magnetic resonance (NMR) spectroscopy, and electron microscopy (EM) to determine surface area, pore-wall protonation and morphology of these materials, respectively. The confined behavior of the low viscous fluids was studied by varying pore diameter, fluid-to-solid ratio, temperature, and pressure, and then compared to bulk liquid state. Both relaxation and diffusion behaviors for the confined fluids showed increasing deviation from pure bulk fluids as the fluid-to-solid ratio was decreased, and surface-to-volume ratio (S/V) was varied. Variable pressure deuteron NMR relaxation of confined D2O and confined methanol, deuterated at the hydroxyl or methyl positions, were performed to exploit the sensitivity of the deuteron quadrupole moment to molecular rotation. The methanol results demonstrated greater pressure dependence than those for water only in bulk. The deviations from bulk liquid behavior arise from different reasons such as confinement and the interactions between confined fluid and the nano-pore wall. The results of the present report give insight into the behavior of low viscosity fluid in nano-confined geometries under different state conditions.
Funding source: A.P. Sloan Foundation
Funding source: Department of Energy
Award Identifier / Grant number: DE-SC0006878
Acknowledgment
Support for S. Ok was provided by the A.P. Sloan Foundation sponsored Deep Carbon Observatory. DRC, JS and SW were supported by the Department of Energy, Basic Energy Sciences Geosciences Program under grant DE-SC0006878. The authors are also thankful to the anonymous reviewers for their suggestions at different stages of the manuscript.
Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: Support for S. Ok was provided by the A.P. Sloan Foundation sponsored Deep Carbon Observatory. DRC, JS and SW were supported by the Department of Energy, Basic Energy Sciences Geosciences Program under grant DE-SC0006878. The authors are also thankful to the anonymous reviewers for their suggestions at different stages of the manuscript.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Millischuk, A. A., Ladanyi, B. M. J. Chem. Phys. 2014, 141, 18C513. https://doi.org/10.1063/1.4896218.10.1063/1.4896218Suche in Google Scholar
2. Vogel, M. Eur. Phys. J. 2010, 189, 47, https://doi.org/10.1140/epjst/e2010-01309-9.10.1140/epjst/e2010-01309-9Suche in Google Scholar
3. D’Agostino, C., Mitchell, J., Gladden, L. F., Mantle, M. D. J. Phys. Chem. C 2012, 116, 8975, https://doi.org/10.1021/jp2123295.10.1021/jp2123295Suche in Google Scholar
4. Demuth, D., Sattig, M., Steinrucken, E., Weigler, M., Vogel, M. Z. Phys. Chem. 2018, 232, 1059, https://doi.org/10.1515/zpch-2017-1027.10.1515/zpch-2017-1027Suche in Google Scholar
5. Gelb, L. D., Gubbins, K. E., Radhakrishnan, R., Sliwinska-Bartkowiak, M. Rep. Prog. Phys. 1999, 62, 1573, https://doi.org/10.1088/0034-4885/62/12/201.10.1088/0034-4885/62/12/201Suche in Google Scholar
6. Stallmach, F., Graser, A., Karger, J., Krause, C., Jeschke, M., Oberhagemann, U., Spange, S. Micropor. Mesopor. Mat. 2001, 44, 745, https://doi.org/10.1016/s1387-1811(01)00256-6.10.1016/S1387-1811(01)00256-6Suche in Google Scholar
7. Cole, D. R, Mamontov, E., Rother, G. Neutron applications in earth, energy and environmental sciences. In Neutron Scattering Applications and Techniques; Liang, L., Rinaldi, R., Schober, H., Eds. Springer: Boston, 2009; pp. 547–570.10.1007/978-0-387-09416-8_19Suche in Google Scholar
8. Cole, D. R., Herwig, K., Mamontov, E., Larese, L. Z. Rev. Mineral. Geochem. 2006, 63, 313, https://doi.org/10.2138/rmg.2006.63.13.10.2138/rmg.2006.63.13Suche in Google Scholar
9. Webber, B., Dore, J. J. Phys. Condens. Matter 2004, 16, S5449, https://doi.org/10.1088/0953-8984/16/45/009.10.1088/0953-8984/16/45/009Suche in Google Scholar
10. Gautam, S. S., Ok, S., Cole, D. R. Front. Earth Sci. 2017, 5, 49, https://doi.org/10.3389/feart.2017.00043.10.3389/feart.2017.00049Suche in Google Scholar
11. Packer, K. J. Magn. Reson. Imaging 2003, 21, 163, https://doi.org/10.1016/s0730-725x(03)00120-6.10.1016/S0730-725X(03)00120-6Suche in Google Scholar
12. Song, Y.-Q. Cement Concrete Res. 2007, 37, 325, https://doi.org/10.1016/j.cemconres.2006.02.013.10.1016/j.cemconres.2006.02.013Suche in Google Scholar
13. Kittler, W. C., Obruchkov, S., Galvosas, P., Hunter, M. W. J. Magn. Reson. 2014, 247, 42, https://doi.org/10.1016/j.jmr.2014.08.005.10.1016/j.jmr.2014.08.005Suche in Google Scholar PubMed
14. D’Orazio, F., Bhattaharja, S., Halperin, W. P., Gerhardt, R.Phys. Rev. B 1990, 42, 6503, https://doi.org/10.1103/physrevb.42.6503.10.1103/PhysRevB.42.6503Suche in Google Scholar
15. D’Orazio, F., Bhattaharja, S., Halperin, W. P., Eguchi, K., Mizusaki, T. Phys. Rev. B 1990, 42, 9810, https://doi.org/10.1103/physrevb.42.9810.10.1103/PhysRevB.42.9810Suche in Google Scholar PubMed
16. Bhattachrja, S., D’Orazio, F., Tarczon, J. C., Halperin, W. P. J. Am. Ceram. Soc. 1989, 72, 2126. https://doi.org/10.1111/j.1151-2916.1989.tb06043.x.10.1111/j.1151-2916.1989.tb06043.xSuche in Google Scholar
17. Sindorf, D.W., Maciel, G. E. J. Am. Chem. Soc. 1983, 105, 1487, https://doi.org/10.1021/ja00344a012.10.1021/ja00344a012Suche in Google Scholar
18. Brodrecht, M., Kumari, B., Breitzke, H., Gutmann, T., Buntkowsky, G. Z. Phys. Chem. 2018, 232, 1127, https://doi.org/10.1515/zpch-2017-1059.10.1515/zpch-2017-1059Suche in Google Scholar
19. Milischuk, A. A., Ladanyi, B. M. J. Chem. Phys. 2011, 135, 174709, https://doi.org/10.1063/1.3657408.10.1063/1.3657408Suche in Google Scholar PubMed
20. Bianco, V., Franzese, G. Sci. Rep. 2014, 4, 4440–4441, https://doi.org/10.1038/srep04440.10.1038/srep04440Suche in Google Scholar PubMed PubMed Central
21. Paul, D. R. Science 2012, 335, 413, https://doi.org/10.1126/science.1216923.10.1126/science.1216923Suche in Google Scholar PubMed
22. Zhang, Y., Faraone, A., Kamitakahara, W. A., Liu, K. H., Mou, C. Y., Leao, J. B., Chang, S., Chen, S. H. Proc. Natl. Acad. Sci. USA 2011, 108, 12206, https://doi.org/10.1073/pnas.1100238108.10.1073/pnas.1100238108Suche in Google Scholar PubMed PubMed Central
23. Faraudo, J., Bresme, F. Phys. Rev. Lett. 2004, 92, 236102, https://doi.org/10.1103/physrevlett.92.236102.10.1103/PhysRevLett.92.236102Suche in Google Scholar PubMed
24. Zangi, R., Mark, A. E. Phys. Rev. Lett. 2003, 91, 025502, https://doi.org/10.1103/physrevlett.91.025502.10.1103/PhysRevLett.91.025502Suche in Google Scholar PubMed
25. Ruhle, B., Davies, M., Lebold, T., Brauchle, C., Bein, T. ACS Nano 2012, 6, 1948, https://doi.org/10.1021/nn2042835.10.1021/nn2042835Suche in Google Scholar PubMed
26. Zhao, H., Chen, Q., Zhang, S. Micropor. Mesopor. Mater. 2012, 155, 240, https://doi.org/10.1016/j.micromeso.2012.01.019.10.1016/j.micromeso.2012.01.019Suche in Google Scholar
27. Grünberg, B., Emmler, T., Gedat, E., Shenderovich, I., Findenegg, G. H., Limbach, H.-H., Buntkowsky, G. Chem. Eur. J. 2004, 10, 5689, https://doi.org/10.1002/chem.200400351.10.1002/chem.200400351Suche in Google Scholar PubMed
28. Corsaro, C., Maisano, R., Mallamace, D., Dugo, G. Physica A 2013, 392, 596, https://doi.org/10.1016/j.physa.2012.11.008.10.1016/j.physa.2012.11.008Suche in Google Scholar
29. Inlow, R. O., Joesten, M. D., Van Wazer, J. R. J. Phys. Chem. 1975, 79, 2307, http://doi.org10.1021/j100588a016.10.1021/j100588a016Suche in Google Scholar
30. Kleinberg, R. L., Kenyon, W. E., Mitra, P. P. J. Magn. Res. Ser. A 1994, 108, 206, https://doi.org/10.1006/jmra.1994.1112.10.1006/jmra.1994.1112Suche in Google Scholar
31. Versmold, H. Ber. Bunsenges. Phys. Chem. 1980, 84, 168, https://doi.org/10.1002/bbpc.19800840211.10.1002/bbpc.19800840211Suche in Google Scholar
32. Hansen, E.W., Simon, C., Haugsrud, R., Raeder, H., Bredesen, R. J. Phys. Chem. B. 2002, 106, 12396, https://doi.org/10.1021/jp0146420.10.1021/jp0146420Suche in Google Scholar
33. Lang, E., Ludemann, H.-D. Ber. Bunsenges. Phys. Chem. 1980, 84, 462, https://doi.org/10.1002/bbpc.19800840508.10.1002/bbpc.19800840508Suche in Google Scholar
34. Stoch, G., Ylinen, E. E., Punkkinen, M., Petelenz, B., Birczynski, A. Solid State Nucl. Magn. Reson. 2009, 35, 180, https://doi.org/10.1016/j.ssnmr.2008.12.009.10.1016/j.ssnmr.2008.12.009Suche in Google Scholar
35. Lalowicz, Z. T., Stoch, G., Birczynski, A., Punkkinen, M., Ylinen, E. E., Krzystyniak, M., Gora-Marek, K., Datka, J. Solid State Nucl. Magn. Reson. 2012, 45–46, 66, https://doi.org/10.1016/j.ssnmr.2012.07.001.10.1016/j.ssnmr.2012.07.001Suche in Google Scholar
36. Williams, J. C., McDermott, A. E. J. Phys. Chem. B. 1998, 102, 6248, https://doi.org/10.1021/jp971068c.10.1021/jp971068cSuche in Google Scholar
37. Ueda, T., Kurokawa, K., Kawamura, Y., Miyakubo, K., Eguchi, T. J. Phys. Chem. C 2012, 116, 1012, https://doi.org/10.1021/jp209746n.10.1021/jp209746nSuche in Google Scholar
38. Angell, C. A. Science 1995, 267, 1924, https://doi.org/10.1126/science.267.5206.1924.10.1126/science.267.5206.1924Suche in Google Scholar
39. Angell, C. A. J. Non-Cryst. Solids 1991, 131–133, 13, https://doi.org/10.1016/0022-3093(91)90266-9.10.1016/0022-3093(91)90266-9Suche in Google Scholar
40. Bergman, R., Swenson, J. Nature 2000, 403, 283, https://doi.org/10.1038/35002027.10.1038/35002027Suche in Google Scholar PubMed
41. Sattig, M., Reutter, S., Fujara, F., Werner, M., Buntkowsky, G., Vogel, M. Phys. Chem. Chem. Phys. 2014, 16, 19229, https://doi.org/10.1039/c4cp02057j.10.1039/C4CP02057JSuche in Google Scholar
42. Gallegos, D. P., D. M. Smith, C. J. Brinker. J. Coll. Inter. Sci. 1988, 124, 186, https://doi.org/10.1016/0021-9797(88)90339-6.10.1016/0021-9797(88)90339-6Suche in Google Scholar
43. Timur, A. J. Petrol. Technol. 1969, 21, 775, https://doi.org/10.2118/2045-pa.10.2118/2045-PASuche in Google Scholar
44. Koylu, M. Z. Int. J. Sci. Res. 2018, 7, 40. https://doi.org/10.21275/ART20191603.Suche in Google Scholar
45. Osti, N. C., Cote, A., Mamontov, E., Ramirez-Cuesta, A., Wesolowski, D. J., Diallo, S. O. Chem. Phys. 2016, 465–466, 1, https://doi.org/10.1016/j.chemphys.2015.11.008.10.1016/j.chemphys.2015.11.008Suche in Google Scholar
46. Herino, R., Perio, A., Barla, K., Bomchil, G. Mater. Lett. 1984, 2, 519, https://doi.org/10.1016/0167-577x(84)90086-7.10.1016/0167-577X(84)90086-7Suche in Google Scholar
47. Moller, F., Ben Chorin, M., Koch, F. Thin Solid Films 1995, 255, 16, https://doi.org/10.1016/0040-6090(94)05623-l.10.1016/0040-6090(94)05623-LSuche in Google Scholar
48. Hadj, Z. N., Vergnat, M., Delatour, T., Burneau, A., De Donato, P., Barres, O. Thin Solid Films 1995, 255, 228, https://doi.org/10.1016/0040-6090(94)05659-2.10.1016/0040-6090(94)05659-2Suche in Google Scholar
49. Okuchi, T., Cody, G. D., Mao, H.-K., Hemley, R. J. J. Chem. Phys. 2005, 122, 244509, https://doi.org/10.1063/1.1944732.10.1063/1.1944732Suche in Google Scholar PubMed
50. Hakes, M., Zeidler, M. D. Phys. Chem. Chem. Phys. 2002, 4, 5119, https://doi.org/10.1039/b205662n.10.1039/b205662nSuche in Google Scholar
51. Bai, S., Yonker, C. R. J. Phys. Chem. A 1998, 102, 8641, https://doi.org/10.1021/jp981302e.10.1021/jp981302eSuche in Google Scholar
52. Arencibia, A., Taravillo, M., Perez, F.J., Nunez, J., Baonza, V. G. Phys. Rev. Lett. 2002, 89, 195504, https://doi.org/10.1103/physrevlett.89.195504.10.1103/PhysRevLett.89.195504Suche in Google Scholar
53. Czeslik, C., Jonas, J. Chem. Phys. Lett. 1999, 302, 633, https://doi.org/10.1016/s0009-2614(99)00170-0.10.1016/S0009-2614(99)00170-0Suche in Google Scholar
54. Soper, A. K., Ricci, M. A. Phys. Rev. Lett. 2000, 84, 2881, https://doi.org/10.1103/physrevlett.84.2881.10.1103/PhysRevLett.84.2881Suche in Google Scholar
55. Greenbaum, S., Jayakody, J. R. P., Stallworth, P. E., Mananga, E., Zapata-Farrington, J. J. Phys. Chem. B 2004, 108, 4260. https://doi.org/10.1021/jp037621+.10.1021/jp037621+Suche in Google Scholar
56. Gorbaty, Y. E., Bondarenko, G. V., Kalinichev, A. G., Okhulkov, A. V. Mol. Phys. 1999, 96, 1659, https://doi.org/10.1080/00268979909483109.10.1080/00268979909483109Suche in Google Scholar
57. Arnold, M. R., Ludemann, H.-D. Phys. Chem. Chem. Phys. 2002, 4, 1581, https://doi.org/10.1039/b110639m.10.1039/b110639mSuche in Google Scholar
58. Lalowicz, Z. T., Sotch, G., Birczynski, A., Punkkinen, M., Krzystyniak, M., Gora-Marek, K., Datka, J. Solid State Nucl. Magn. Reson. 2010, 37, 91, https://doi.org/10.1016/j.ssnmr.2010.04.004.10.1016/j.ssnmr.2010.04.004Suche in Google Scholar
59. Lee, Y. K., Campbell, J. H., Jonas, J. J. Chem. Phys. 1974, 60, 3537, https://doi.org/10.1063/1.1681571.10.1063/1.1681571Suche in Google Scholar
60. Holz, M., Weingartner, H. J. Magn. Reson. 1991, 92, 115, https://doi.org/10.1016/0022-2364(91)90252-o.10.1016/0022-2364(91)90252-OSuche in Google Scholar
61. Stallmach, F., Karger, J., Krause, C., Jeschke, M., Oberhagemann, U. J. Am. Chem. Soc. 2000, 122, 9237, https://doi.org/10.1021/ja001106x.10.1021/ja001106xSuche in Google Scholar
62. Cotts, R. M. J. Magn. Reson. 1989, 83, 252, https://doi.org/10.1016/0022-2364(89)90189-3.10.1016/0022-2364(89)90189-3Suche in Google Scholar
63. Lim, D.-W., Sadakiyo, M., Kitagawa, H. Chem. Sci. 2019, 10, 16, https://doi.org/10.1039/c8sc04475a.10.1039/C8SC04475ASuche in Google Scholar
64. Degat, E., Schreiber, A., Findenegg, G., Shenderovich, I., Limbach, H.-H., Buntkowsky, G. Magn. Reson. Chem. 2001, 39, S149. https://doi.org/10.1002/mrc.932.10.1002/mrc.932Suche in Google Scholar
65. Buntkowsky, G., Breitzke, H., Adamczyk, A., Roelofs, F., Emmler, T., Gedat, E., Grünberg, B., Xu, Y., Limbach, H.-H., Shenderovich, I., Vyalikh, A., Findenegg, G. Phys. Chem. Chem. Phys. 2007, 9, 4843, https://doi.org/10.1039/b707322d.10.1039/b707322dSuche in Google Scholar PubMed
Supplementary Material
Supplementary Material to this article can be found online at (https://doi.org/10.1515/ZPCH-2019-1510).
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Structure and energetics of microscopically inhomogeneous nanoplasmas in exploding clusters
- A solution of the time paradox of physics
- Facile in situ redox synthesis of Au@Fe2O3 nanocomposites with multifunctional catalytic activity
- Synthesis of Fe3O4 nanoparticles @Trioctylmethylammonium thiosalicylat (TOMATS) as a new magnetic nanoadsorbent for adsorption of ciprofloxacin in aqueous solution
- Chemically modified Quercus dilatata plant leaves for Pb (II), Cd (II), and Cr (VI) ions remediation from aqueous solution
- High-temperature and high-pressure NMR investigations of low viscous fluids confined in mesoporous systems
Artikel in diesem Heft
- Frontmatter
- Original Papers
- Structure and energetics of microscopically inhomogeneous nanoplasmas in exploding clusters
- A solution of the time paradox of physics
- Facile in situ redox synthesis of Au@Fe2O3 nanocomposites with multifunctional catalytic activity
- Synthesis of Fe3O4 nanoparticles @Trioctylmethylammonium thiosalicylat (TOMATS) as a new magnetic nanoadsorbent for adsorption of ciprofloxacin in aqueous solution
- Chemically modified Quercus dilatata plant leaves for Pb (II), Cd (II), and Cr (VI) ions remediation from aqueous solution
- High-temperature and high-pressure NMR investigations of low viscous fluids confined in mesoporous systems