Startseite Highly Dispersed CuNi Nanoparticles Supported on Reduced Graphene Oxide as Efficient Catalysts for Hydrogen Generation from NH3BH3
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Highly Dispersed CuNi Nanoparticles Supported on Reduced Graphene Oxide as Efficient Catalysts for Hydrogen Generation from NH3BH3

  • Xigang Du , Yuping Tai , Hongyu Liu , Jun Zhang EMAIL logo , Mengfan Su , Fengyu Li und Shumeng Wang
Veröffentlicht/Copyright: 24. Februar 2020

Abstract

Highly dispersed CuNi nanoparticles (NPs) immobilized on reduced graphene oxide (RGO) were synthesized via the simple in situ co-reduction of an aqueous solution of Copper(II) sulfate pentahydrate, nickel chloride hexahydrate, and graphene oxide (GO) by the reduction of ammonia borane (AB) at room temperature. The powder XRD, FTIR, EDS, and TEM techniques were used to charaterize the structure, size, and composition of the CuNi/RGO catalysts. The as-prepared CuNi/RGO catalysts showed excellent catalytic performance toward the hydrolysis of AB at room temperature. Compared to Cu/RGO, Ni/RGO, and the RGO-free Cu0.6Ni0.4 counterpart, the as-prepared Cu0.6Ni0.4/RGO catalysts showed much better catalytic activity. Furthermore, kinetic studies showed that the catalytic hydrolysis of AB by Cu0.6Ni0.4/RGO has zero order dependence on the AB concentration, but first order dependence on the catalyst concentration. The turnover frequency (TOF) of Cu0.6Ni0.4/RGO catalyst for the hydrolytic dehydrogenation of AB was determined to be about 20.2 mol H2 (mol Cu0.6Ni0.4/RGO)−1 min−1 at 25 °C. In addition, the activation energy (Ea) of Cu0.6Ni0.4/RGO was determined to be around 17.7 kJ mol−1, which is one of the lowest activation energy’s of the reported metal-based catalysts.

Award Identifier / Grant number: 21576073

Award Identifier / Grant number: 21076063

Funding statement: The project was supported by the National Natural Science Foundation of China (Funder Id: http://dx.doi.org/10.13039/501100001809, 21576073, 21076063).

References

1. U. Eberle, M. Felderhoff, F. Schüth, Angew. Chem. Int. Ed. 48 (2009) 6608.10.1002/anie.200806293Suche in Google Scholar PubMed

2. K. Mori, K. Miyawaki, H. Yamashita, ACS Catal. 6 (2016) 3128.10.1021/acscatal.6b00715Suche in Google Scholar

3. W. Zhan, Q. L. Zhu, Q. Xu, ACS Catal. 6 (2016) 6892.10.1021/acscatal.6b02209Suche in Google Scholar

4. R. B. Serin, N. Abdullayeva, M. Sankir, Materials 10 (2017) 738.10.3390/ma10070738Suche in Google Scholar PubMed PubMed Central

5. E. Ha, L. Y. S. Lee, J. Wang, F. Li, K. Y. Wong, S. C. E. Tsang, Adv. Mater. 26 (2014) 3496.10.1002/adma.201400243Suche in Google Scholar PubMed

6. E. Stamatakis, E. Zoulias, G. Tzamalis, Z. Massina, V. Analytis, Renew. Energy 127 (2018) 850.10.1016/j.renene.2018.04.073Suche in Google Scholar

7. Y. Liu, J. Zhang, H. J. Guan, Y. F. Zhao, J. H. Yang, B. Zhang, Appl. Surf. Sci. 427 (2018) 106.10.1016/j.apsusc.2017.08.171Suche in Google Scholar

8. A. Staubitz, A. P. M. Robertson, M. E. Sloan, I. Manners, Chem. Rev. 110 (2010) 4023.10.1021/cr100105aSuche in Google Scholar PubMed

9. Y. Lou, J. He, G. Liu, S. Qi, L. Cheng, J. Chen, Y. Zhao, J. J. Zhu, Chem. Commun. 54 (2018) 6188.10.1039/C8CC03502DSuche in Google Scholar

10. C. Li, D. Wang, Y. Wang, G. D. Li, G. J. Hu, S. W. Wu, Z. Q. Cao, K. Zhang, J. Colloid Interf. Sci. 524 (2018) 25.10.1016/j.jcis.2018.03.085Suche in Google Scholar PubMed

11. H. L. Wang, D. W. Gao, L. Y. Wang, Y. Chi, M. G. Wang, Y. Gu, C. Wang, Z. K. Zhao, Catal. Lett. 148 (2018) 1739.10.1007/s10562-018-2374-8Suche in Google Scholar

12. U. B. Demirci, S. Bernard, R. Chiriac, F. Toche, P. Miele, J. Power Sources 196 (2018) 279.10.1016/j.jpowsour.2010.06.031Suche in Google Scholar

13. J. K. Zhang, W. Y. Chen, H. B. Ge, C. Q. Chen, W. J. Yan, Z. Gao, J. Gan, B. Y. Zhang, X. Z. Duan, Y. Qin, Appl. Catal. B-Environ. 235 (2018) 256.10.1016/j.apcatb.2018.04.070Suche in Google Scholar

14. F. Durap, S. Caliskan, S. Özkar, K. Karakas, M. Zahmakiran, Materials 8 (2015) 4226.10.3390/ma8074226Suche in Google Scholar PubMed PubMed Central

15. R. Lu, M. Hu, C. L. Xu, Y. Wang, Y. Zhang, B. Xu, D. J. Gao, J. Bi, G. Y. Fan, Int. J. Hydrogen Energy 43 (2018) 7038.10.1016/j.ijhydene.2018.02.148Suche in Google Scholar

16. H. L. Jiang, T. Akita, Q. Xu, Chem. Comm. 47 (2011) 10999.10.1039/c1cc13989dSuche in Google Scholar PubMed

17. D. D. Gao, Y. H. Zhang, L. Q. Zhou, K. Z. Yang, Surf. Sci. 427 (2018) 114.10.1016/j.apsusc.2017.08.167Suche in Google Scholar

18. S. Roy, P. Pachfule, Q. Xu, Eur. J. Inorg. Chem. 2016 (2016) 4353.10.1002/ejic.201600180Suche in Google Scholar

19. D. D. Ke, Y. Li, J. Wang, L. Zhang, J. Wang, X. Zhao, S. Q. Yang, S. M. Han, Int. J. Hydrogen Energy 41 (2016) 2564.10.1016/j.ijhydene.2015.11.142Suche in Google Scholar

20. X. Wang, D. P. Liu, X. Feng, S. Y. Song, H. J. Zhang, J. Am. Chem. Soc. 135 (2013) 15864.10.1021/ja4069134Suche in Google Scholar PubMed

21. Q. T. Wang, Z. Zhang, J. Liu, R. C. Liu, T. Liu, Mater. Chem. Phys. 204 (2018) 58.10.1016/j.matchemphys.2017.10.036Suche in Google Scholar

22. H. Y. Liu, J. Wu, C. Liu, B. Pan, N. H. Kim, J. H. Lee, Compos. Part B 155 (2018) 391.10.1016/j.compositesb.2018.08.137Suche in Google Scholar

23. X. G. Du, Y. H. Duan, J. Zhang, G. Mi, Z. Phys. Chem. 232 (2018) 431.10.1515/zpch-2017-0993Suche in Google Scholar

24. P. V. Ramachandran, P. D. Gagare, Inorg. Chem. 46 (2007) 7810.10.1021/ic700772aSuche in Google Scholar PubMed

25. X. G. Du, Y. P. Tai, H. Y. Liu, J. Zhang, React. Kinet. Mech. Cat. 125 (2018) 171.10.1007/s11144-018-1392-2Suche in Google Scholar

26. J. M. Yan, Z. L. Wang, H. L. Wang, Q. Jiang, J. Mater. Chem. 22 (2012) 10990.10.1039/c2jm31042bSuche in Google Scholar

27. E. H. Song, Z. Wen, Q. Jiang, J. Phys. Chem. C 115 (2011) 3678.10.1021/jp108978cSuche in Google Scholar

28. K. Güngörmez, Ö. Metin, Appl. Catal. A-Gen. 494 (2015) 22.10.1016/j.apcata.2015.01.020Suche in Google Scholar

29. Z. H. Lu, J. P. Li, A. L. Zhu, Q. L. Yao, W. Huang, R. Y. Zhou, R. F. Zhou, X. S. Chen, Int. J. Hydrogen Energy 38 (2013) 5330.10.1016/j.ijhydene.2013.02.076Suche in Google Scholar

30. M. Dai, X. C. Shen, Q. Wang, Z. B. Wang, B. Zhao, W. P. Ding, Chin. J. Inorg. Chem. 10 (2014) 2375.Suche in Google Scholar

31. Q. L. Yao, Z. H. Lu, Z. J. Zhang, X. S. Chen, Y. Q. Lan, Sci. Rep. 4 (2014) 7597.10.1038/srep07597Suche in Google Scholar PubMed PubMed Central

32. Y. S. Du, L. Yang, N. Cao, W. Luo, G. Cheng, New J. Chem. 37 (2013) 3035.10.1039/c3nj00552fSuche in Google Scholar

33. D. D. Gao, Y. H. Zhang, L. Q. Zhou, K. Z. Yang, Appl. Surf. Sci. 427 (2018) 114.10.1016/j.apsusc.2017.08.167Suche in Google Scholar

34. Z. H. Lu, J. P. Li, G. Feng, Q. L. Yao, F. Zhang, R. Y. Zhou, D. J. Tao, X. S. Chen, Z. Q. Yu, Int. J. Hydrogen Energy 38 (2014) 13389.10.1016/j.ijhydene.2014.04.086Suche in Google Scholar

35. X. Y. Meng, S. S. Li, B. Q. Xia, L. Yang, N. Cao, J. Su, M. He, W. Luo, G. Z. Cheng, Rsc Adv. 4 (2014) 32817.10.1039/C4RA04894FSuche in Google Scholar

36. F. Y. Qiu, Dai, L. Y. L. Li, C. C. Xu, Y. N. Huang, C. C. Chen, Y. J. Wang, L. F. Jiao, H. T. Yuan, Int. J. Hydrogen Energy 39 (2014) 436.10.1016/j.ijhydene.2013.10.080Suche in Google Scholar

37. Q. L. Yao, K. Yang, X. L. Hong, X. S. Chen, Z. H. Lu, Catal. Sci. Technol. 8 (2018) 870.10.1039/C7CY02365KSuche in Google Scholar

38. Z. H. Lu, J. P. Li, A. L. Zhu, Q. L. Yao, W. Huang, R. Y. Zhou, R. Zhou, X. Chen, Int. J. Hydrogen Energy 38 (2013) 5330.10.1016/j.ijhydene.2013.02.076Suche in Google Scholar

Received: 2018-10-19
Accepted: 2019-07-26
Published Online: 2020-02-24
Published in Print: 2020-10-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 6.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2018-1317/html
Button zum nach oben scrollen