Highly Dispersed CuNi Nanoparticles Supported on Reduced Graphene Oxide as Efficient Catalysts for Hydrogen Generation from NH3BH3
Abstract
Highly dispersed CuNi nanoparticles (NPs) immobilized on reduced graphene oxide (RGO) were synthesized via the simple in situ co-reduction of an aqueous solution of Copper(II) sulfate pentahydrate, nickel chloride hexahydrate, and graphene oxide (GO) by the reduction of ammonia borane (AB) at room temperature. The powder XRD, FTIR, EDS, and TEM techniques were used to charaterize the structure, size, and composition of the CuNi/RGO catalysts. The as-prepared CuNi/RGO catalysts showed excellent catalytic performance toward the hydrolysis of AB at room temperature. Compared to Cu/RGO, Ni/RGO, and the RGO-free Cu0.6Ni0.4 counterpart, the as-prepared Cu0.6Ni0.4/RGO catalysts showed much better catalytic activity. Furthermore, kinetic studies showed that the catalytic hydrolysis of AB by Cu0.6Ni0.4/RGO has zero order dependence on the AB concentration, but first order dependence on the catalyst concentration. The turnover frequency (TOF) of Cu0.6Ni0.4/RGO catalyst for the hydrolytic dehydrogenation of AB was determined to be about 20.2 mol H2 (mol Cu0.6Ni0.4/RGO)−1 min−1 at 25 °C. In addition, the activation energy (Ea) of Cu0.6Ni0.4/RGO was determined to be around 17.7 kJ mol−1, which is one of the lowest activation energy’s of the reported metal-based catalysts.
Funding source: National Natural Science Foundation of China
Award Identifier / Grant number: 21576073
Award Identifier / Grant number: 21076063
Funding statement: The project was supported by the National Natural Science Foundation of China (Funder Id: http://dx.doi.org/10.13039/501100001809, 21576073, 21076063).
References
1. U. Eberle, M. Felderhoff, F. Schüth, Angew. Chem. Int. Ed. 48 (2009) 6608.10.1002/anie.200806293Suche in Google Scholar PubMed
2. K. Mori, K. Miyawaki, H. Yamashita, ACS Catal. 6 (2016) 3128.10.1021/acscatal.6b00715Suche in Google Scholar
3. W. Zhan, Q. L. Zhu, Q. Xu, ACS Catal. 6 (2016) 6892.10.1021/acscatal.6b02209Suche in Google Scholar
4. R. B. Serin, N. Abdullayeva, M. Sankir, Materials 10 (2017) 738.10.3390/ma10070738Suche in Google Scholar PubMed PubMed Central
5. E. Ha, L. Y. S. Lee, J. Wang, F. Li, K. Y. Wong, S. C. E. Tsang, Adv. Mater. 26 (2014) 3496.10.1002/adma.201400243Suche in Google Scholar PubMed
6. E. Stamatakis, E. Zoulias, G. Tzamalis, Z. Massina, V. Analytis, Renew. Energy 127 (2018) 850.10.1016/j.renene.2018.04.073Suche in Google Scholar
7. Y. Liu, J. Zhang, H. J. Guan, Y. F. Zhao, J. H. Yang, B. Zhang, Appl. Surf. Sci. 427 (2018) 106.10.1016/j.apsusc.2017.08.171Suche in Google Scholar
8. A. Staubitz, A. P. M. Robertson, M. E. Sloan, I. Manners, Chem. Rev. 110 (2010) 4023.10.1021/cr100105aSuche in Google Scholar PubMed
9. Y. Lou, J. He, G. Liu, S. Qi, L. Cheng, J. Chen, Y. Zhao, J. J. Zhu, Chem. Commun. 54 (2018) 6188.10.1039/C8CC03502DSuche in Google Scholar
10. C. Li, D. Wang, Y. Wang, G. D. Li, G. J. Hu, S. W. Wu, Z. Q. Cao, K. Zhang, J. Colloid Interf. Sci. 524 (2018) 25.10.1016/j.jcis.2018.03.085Suche in Google Scholar PubMed
11. H. L. Wang, D. W. Gao, L. Y. Wang, Y. Chi, M. G. Wang, Y. Gu, C. Wang, Z. K. Zhao, Catal. Lett. 148 (2018) 1739.10.1007/s10562-018-2374-8Suche in Google Scholar
12. U. B. Demirci, S. Bernard, R. Chiriac, F. Toche, P. Miele, J. Power Sources 196 (2018) 279.10.1016/j.jpowsour.2010.06.031Suche in Google Scholar
13. J. K. Zhang, W. Y. Chen, H. B. Ge, C. Q. Chen, W. J. Yan, Z. Gao, J. Gan, B. Y. Zhang, X. Z. Duan, Y. Qin, Appl. Catal. B-Environ. 235 (2018) 256.10.1016/j.apcatb.2018.04.070Suche in Google Scholar
14. F. Durap, S. Caliskan, S. Özkar, K. Karakas, M. Zahmakiran, Materials 8 (2015) 4226.10.3390/ma8074226Suche in Google Scholar PubMed PubMed Central
15. R. Lu, M. Hu, C. L. Xu, Y. Wang, Y. Zhang, B. Xu, D. J. Gao, J. Bi, G. Y. Fan, Int. J. Hydrogen Energy 43 (2018) 7038.10.1016/j.ijhydene.2018.02.148Suche in Google Scholar
16. H. L. Jiang, T. Akita, Q. Xu, Chem. Comm. 47 (2011) 10999.10.1039/c1cc13989dSuche in Google Scholar PubMed
17. D. D. Gao, Y. H. Zhang, L. Q. Zhou, K. Z. Yang, Surf. Sci. 427 (2018) 114.10.1016/j.apsusc.2017.08.167Suche in Google Scholar
18. S. Roy, P. Pachfule, Q. Xu, Eur. J. Inorg. Chem. 2016 (2016) 4353.10.1002/ejic.201600180Suche in Google Scholar
19. D. D. Ke, Y. Li, J. Wang, L. Zhang, J. Wang, X. Zhao, S. Q. Yang, S. M. Han, Int. J. Hydrogen Energy 41 (2016) 2564.10.1016/j.ijhydene.2015.11.142Suche in Google Scholar
20. X. Wang, D. P. Liu, X. Feng, S. Y. Song, H. J. Zhang, J. Am. Chem. Soc. 135 (2013) 15864.10.1021/ja4069134Suche in Google Scholar PubMed
21. Q. T. Wang, Z. Zhang, J. Liu, R. C. Liu, T. Liu, Mater. Chem. Phys. 204 (2018) 58.10.1016/j.matchemphys.2017.10.036Suche in Google Scholar
22. H. Y. Liu, J. Wu, C. Liu, B. Pan, N. H. Kim, J. H. Lee, Compos. Part B 155 (2018) 391.10.1016/j.compositesb.2018.08.137Suche in Google Scholar
23. X. G. Du, Y. H. Duan, J. Zhang, G. Mi, Z. Phys. Chem. 232 (2018) 431.10.1515/zpch-2017-0993Suche in Google Scholar
24. P. V. Ramachandran, P. D. Gagare, Inorg. Chem. 46 (2007) 7810.10.1021/ic700772aSuche in Google Scholar PubMed
25. X. G. Du, Y. P. Tai, H. Y. Liu, J. Zhang, React. Kinet. Mech. Cat. 125 (2018) 171.10.1007/s11144-018-1392-2Suche in Google Scholar
26. J. M. Yan, Z. L. Wang, H. L. Wang, Q. Jiang, J. Mater. Chem. 22 (2012) 10990.10.1039/c2jm31042bSuche in Google Scholar
27. E. H. Song, Z. Wen, Q. Jiang, J. Phys. Chem. C 115 (2011) 3678.10.1021/jp108978cSuche in Google Scholar
28. K. Güngörmez, Ö. Metin, Appl. Catal. A-Gen. 494 (2015) 22.10.1016/j.apcata.2015.01.020Suche in Google Scholar
29. Z. H. Lu, J. P. Li, A. L. Zhu, Q. L. Yao, W. Huang, R. Y. Zhou, R. F. Zhou, X. S. Chen, Int. J. Hydrogen Energy 38 (2013) 5330.10.1016/j.ijhydene.2013.02.076Suche in Google Scholar
30. M. Dai, X. C. Shen, Q. Wang, Z. B. Wang, B. Zhao, W. P. Ding, Chin. J. Inorg. Chem. 10 (2014) 2375.Suche in Google Scholar
31. Q. L. Yao, Z. H. Lu, Z. J. Zhang, X. S. Chen, Y. Q. Lan, Sci. Rep. 4 (2014) 7597.10.1038/srep07597Suche in Google Scholar PubMed PubMed Central
32. Y. S. Du, L. Yang, N. Cao, W. Luo, G. Cheng, New J. Chem. 37 (2013) 3035.10.1039/c3nj00552fSuche in Google Scholar
33. D. D. Gao, Y. H. Zhang, L. Q. Zhou, K. Z. Yang, Appl. Surf. Sci. 427 (2018) 114.10.1016/j.apsusc.2017.08.167Suche in Google Scholar
34. Z. H. Lu, J. P. Li, G. Feng, Q. L. Yao, F. Zhang, R. Y. Zhou, D. J. Tao, X. S. Chen, Z. Q. Yu, Int. J. Hydrogen Energy 38 (2014) 13389.10.1016/j.ijhydene.2014.04.086Suche in Google Scholar
35. X. Y. Meng, S. S. Li, B. Q. Xia, L. Yang, N. Cao, J. Su, M. He, W. Luo, G. Z. Cheng, Rsc Adv. 4 (2014) 32817.10.1039/C4RA04894FSuche in Google Scholar
36. F. Y. Qiu, Dai, L. Y. L. Li, C. C. Xu, Y. N. Huang, C. C. Chen, Y. J. Wang, L. F. Jiao, H. T. Yuan, Int. J. Hydrogen Energy 39 (2014) 436.10.1016/j.ijhydene.2013.10.080Suche in Google Scholar
37. Q. L. Yao, K. Yang, X. L. Hong, X. S. Chen, Z. H. Lu, Catal. Sci. Technol. 8 (2018) 870.10.1039/C7CY02365KSuche in Google Scholar
38. Z. H. Lu, J. P. Li, A. L. Zhu, Q. L. Yao, W. Huang, R. Y. Zhou, R. Zhou, X. Chen, Int. J. Hydrogen Energy 38 (2013) 5330.10.1016/j.ijhydene.2013.02.076Suche in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Matter-Energy Equivalence
- Modulations in Self-Organization Properties of Surfactant in Aqueous Ionic Liquid Media
- Preparation and Physicochemical Characterization of Dual Responsive and Chemically Modified Cellulose Based Copolymer Hydrogels
- Highly Dispersed CuNi Nanoparticles Supported on Reduced Graphene Oxide as Efficient Catalysts for Hydrogen Generation from NH3BH3
- Removal of Phenol from Steel Plant Wastewater in Three Dimensional Electrochemical (TDE) Process using CoFe2O4@AC/H2O2
- Microwave-Assisted Synthesis of Cobalt Oxide/Reduced Graphene Oxide (Co3O4–rGo) Composite and its Sulfite Enhanced Photocatalytic Degradation of Organic Dyes
- Observation of Induced Luminescence and Thermochromism in Achiral Hydrogen Bonded Liquid Crystal Complexes
Artikel in diesem Heft
- Frontmatter
- Matter-Energy Equivalence
- Modulations in Self-Organization Properties of Surfactant in Aqueous Ionic Liquid Media
- Preparation and Physicochemical Characterization of Dual Responsive and Chemically Modified Cellulose Based Copolymer Hydrogels
- Highly Dispersed CuNi Nanoparticles Supported on Reduced Graphene Oxide as Efficient Catalysts for Hydrogen Generation from NH3BH3
- Removal of Phenol from Steel Plant Wastewater in Three Dimensional Electrochemical (TDE) Process using CoFe2O4@AC/H2O2
- Microwave-Assisted Synthesis of Cobalt Oxide/Reduced Graphene Oxide (Co3O4–rGo) Composite and its Sulfite Enhanced Photocatalytic Degradation of Organic Dyes
- Observation of Induced Luminescence and Thermochromism in Achiral Hydrogen Bonded Liquid Crystal Complexes