Startseite DFT and Thermal Decomposition Studies on Gemcitabine
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

DFT and Thermal Decomposition Studies on Gemcitabine

  • Ereen Rezkallah , Abeer Ibrahim , AbdelRahman Dahy , Ahmed Abdel Hakiem und Refaat Mahfouz EMAIL logo
Veröffentlicht/Copyright: 27. März 2019

Abstract

Geometry optimization of gemcitabine was carried out by DFT with B3LYP/6-311++G(d,p) level in the gas phase. Chemical activity (electronegativity, electrophilicity, hardness, chemical softness and chemical potential) was predicted with the help of HOMO-LUMO energy values. Experimental FT-IR was recorded and computed values are also analyzed using the same level of DFT. A complete vibrational spectrum was made to analyze the potential energy distribution (PED). Stability of the molecule arising from the hyper-conjugative interaction was analyzed by the natural bond orbital (NBO). The molecular electrostatic potential map was used to detect the possible electrophilic and nucleophilic sites in the molecule. Nonisothermal decomposition of gemcitabine was carried out in an air atmosphere. The two decomposition steps of the molecule were analyzed kinetically by linear and nonlinear methods for elucidation of the kinetic triplet (Ea, ln A and f(α)) of the decomposition processes. Powder X-ray diffraction indicated that gemcitabine crystallizes in the monoclinic system (SG P2/m). Molecular docking studies were also described.

Acknowledgment

This work is a part of Ereen Adel Rezkallah M.Sc. thesis. The authors would like to thank Assiut University for the official technical and financial support.

References

1. C. M. Galmarini, J. R. Mackey, C. Dumontet, Lancet Oncol. 3 (2002) 415.10.1016/S1470-2045(02)00788-XSuche in Google Scholar

2. J. Carmichael, J. Walling, Eur. J. Cancer 33 (1997) S27.10.1016/S0959-8049(96)00392-9Suche in Google Scholar

3. M. D. Shelley, A. Cleves, T. J. Wilt, M. D. Mason, BJU Int. 108 (2011) 168.10.1111/j.1464-410X.2011.10341.xSuche in Google Scholar PubMed

4. T. Walter, A. M. Horgan, M. McNamara, L. Mckeever, T. Min, D. Hedley, S. Serra, M. K. Krzyzanowska, E. Chen, H. Mackey, R. Feld, M. Moore, J. J. Knox, Eur. J. Cancer 49 (2013) 329.10.1016/j.ejca.2012.08.003Suche in Google Scholar PubMed

5. G. Lombardi, F. Zustovich, F. Farinati, U. Cillo, A. Vitalel, G. Zanus, M. Donach, M. Farina, S. Zovato, D. Pastorelli, Cancer 117 (2011) 125.10.1002/cncr.25578Suche in Google Scholar PubMed

6. A. Maraveyas, J. Waters, R. Roy, D. Fyfe, D. Propper, F. Lofts, J. Sgouros, E. Gardiner, K. Wedgwood, C. Ettelaie, G. Bozas, Eur. J. Cancer 48 (2012) 1283.10.1016/j.ejca.2011.10.017Suche in Google Scholar PubMed

7. H. Q. Xiong, A. Rosenberg, A. LoBuglio, W. Schmidt, R. A. Wolff, J. Deustch, M. Needle, J. L. Abbruzzese, J. Clin. Oncol. 22 (2004) 2610.10.1200/JCO.2004.12.040Suche in Google Scholar PubMed

8. J. E. Frampton, A. J. Wagstaff, Am. J. Cancer 4 (2006) 395.10.2165/00024669-200504060-00006Suche in Google Scholar

9. L. de Sousa Cavalcante, G. Monterio, Eur. J. Pharmco. 741 (2014) 8.10.1016/j.ejphar.2014.07.041Suche in Google Scholar PubMed

10. G. J. Peters, Gemcitabine: Mechanism of Action and Resistance, in: A. M. Bergman, G. J. Peters (Eds.): Deoxynucleoside Analogs in Cancer Therapy, Humana Press Inc., Totowa, NJ (2006), pp. 225–251.10.1007/978-1-59745-148-2Suche in Google Scholar

11. G. R. Heal, Thermogravimetry and Derivative Thermogravimetry, in: P. J. Haines (Ed.): Principles of Thermal Analysis and Calorimetry, The Royal Society of Chemistry, Thomas Graham house, Cambridge (2002), pp. 10–54.10.1039/9781847551764-00010Suche in Google Scholar

12. S. Davoudizadeh, M. Sarsabili, K. Khezri, Z. Phys. Chem. 231 (2017) 1543.10.1515/zpch-2016-0812Suche in Google Scholar

13. K. Khezri, H. Mahdavi, Z. Phys. Chem. 230 (2016) 1499.10.1515/zpch-2015-0688Suche in Google Scholar

14. K. Khezri, H. Alijani, Y. Fazli, Z. Phys. Chem. 230 (2016) 111.10.1515/zpch-2015-0638Suche in Google Scholar

15. A. Khawam, D. R. Flangan, J. Pharm. Sci. 95 (2006) 472.10.1002/jps.20559Suche in Google Scholar PubMed

16. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox. Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT (2009).Suche in Google Scholar

17. A. D. Becke, J. Chem. Phys. 98 (1993) 5648.10.1063/1.464913Suche in Google Scholar

18. A. D. Becke, J. Chem. Phys. 104 (1996) 1040.10.1063/1.470829Suche in Google Scholar

19. A. D. Becke, Phys. Rev. A 38 (1988) 3098.10.1103/PhysRevA.38.3098Suche in Google Scholar

20. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37 (1988) 785.10.1103/PhysRevB.37.785Suche in Google Scholar

21. W. Koch, M. C. Holthausen, A Chemist’s Guide to Density Functional Theory, Wiley-VCH Verlag GmbH, Weinheim (2000).10.1002/3527600043Suche in Google Scholar

22. P. C. Hariharan, J. A. Pople, Theor. Chim. Acta. 28 (1973) 213.10.1007/BF00533485Suche in Google Scholar

23. R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 72 (1980) 650.10.1063/1.438955Suche in Google Scholar

24. T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. v. R. Schleyer, J. Comput. Chem. 4 (1983) 294.10.1002/jcc.540040303Suche in Google Scholar

25. S. Abdalla, Y. Umar, I. Mokhtar, Z. Phys. Chem. 230 (2016) 867.10.1515/zpch-2015-0700Suche in Google Scholar

26. M. H. Jamr’oz, Vibrational Energy Distribution Analysis VEDA4, Warsaw (2004).Suche in Google Scholar

27. R. Dennington, T. Keith, J. Millam, Gauss View, Version 5, Semichem Inc., Shawnee Mission, KS (2009).Suche in Google Scholar

28. J. Rodriguez-Carvajal, Physica B 192 (1993) 55.10.1016/0921-4526(93)90108-ISuche in Google Scholar

29. A. E. Reed, L. A. Cartiss, F. K. Weinhold, Chem. Rev. 88 (1988) 899.10.1021/cr00088a005Suche in Google Scholar

30. C. Wu, J. You, X. Wang, J. Anal. Appl. Pyrolysis 130 (2018) 118.10.1016/j.jaap.2018.01.019Suche in Google Scholar

31. K. Fukui, Science 218 (1982) 747.10.1126/science.218.4574.747Suche in Google Scholar PubMed

32. T. Lu, F. Chen, J. Comput. Chem. 33 (2012) 580.10.1002/jcc.22885Suche in Google Scholar PubMed

33. B. Kosar, C. Albayrak, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 78 (2011) 160.10.1016/j.saa.2010.09.016Suche in Google Scholar PubMed

34. R. G. Pearson, J. Org. Chem. 54 (1989) 1423.10.1021/jo00267a034Suche in Google Scholar

35. P. Greelings, F. D. Proft, W. Langenaeker, Chem. Rev. 103 (2003) 1793.10.1021/cr990029pSuche in Google Scholar PubMed

36. P. Muniappan, R. Meenaskshi, G. Rajavel, M. Arivazhangan, Spectrochim. Acta A: Mol. Biomol. Spect. 117 (2014) 739.10.1016/j.saa.2013.08.049Suche in Google Scholar PubMed

37. M. Kavimani, V. Balachandran, B. Narayana, K. Vanasundari, B. Revathi, Spectrochim. Acta A: Mol. Biomol. Spect. 190 (2018) 47.10.1016/j.saa.2017.09.005Suche in Google Scholar PubMed

38. A. B. Becke, K. E. Edgecombe, J. Chem. Phys. 92 (1990) 5397.10.1063/1.458517Suche in Google Scholar

39. M. Kavimani, V. Balachandran, B. Narayana, K. Vanasundari, B. Revathi, J. Mol. Struc. 1149 (2017) 59.10.1016/j.molstruc.2017.07.094Suche in Google Scholar

40. R. F. W. Bader, Atoms in Molecules. A Quantum Theory, Oxford University, Oxford (1990).10.1093/oso/9780198551683.001.0001Suche in Google Scholar

41. R. F. W. Bader, Chem. Rev. 91 (1991) 893.10.1021/cr00005a013Suche in Google Scholar

42. D. A. Kleinman, Phys. Rev. 126 (1962) 1977.10.1103/PhysRev.126.1977Suche in Google Scholar

43. R. H. Abu-Eittah, N. G. Zaki, M. M. A. Mohamed, L. T. Kamel, J. Anal. Appl. Pyrolysis 77 (2006) 1.10.1016/j.jaap.2005.06.004Suche in Google Scholar

44. G. Sudlow, D. J. Birkett, D. N. Wade, Mol. Pharmaco. 12 (1976) 1052.Suche in Google Scholar


Supplementary Material

The online version of this article offers supplementary material (DOI: https://doi.org/10.1515/zpch-2018-1304).


Received: 2018-09-18
Accepted: 2018-12-01
Published Online: 2019-03-27
Published in Print: 2019-10-25

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 14.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2018-1304/html
Button zum nach oben scrollen