Abstract
Geometry optimization of gemcitabine was carried out by DFT with B3LYP/6-311++G(d,p) level in the gas phase. Chemical activity (electronegativity, electrophilicity, hardness, chemical softness and chemical potential) was predicted with the help of HOMO-LUMO energy values. Experimental FT-IR was recorded and computed values are also analyzed using the same level of DFT. A complete vibrational spectrum was made to analyze the potential energy distribution (PED). Stability of the molecule arising from the hyper-conjugative interaction was analyzed by the natural bond orbital (NBO). The molecular electrostatic potential map was used to detect the possible electrophilic and nucleophilic sites in the molecule. Nonisothermal decomposition of gemcitabine was carried out in an air atmosphere. The two decomposition steps of the molecule were analyzed kinetically by linear and nonlinear methods for elucidation of the kinetic triplet (Ea, ln A and f(α)) of the decomposition processes. Powder X-ray diffraction indicated that gemcitabine crystallizes in the monoclinic system (SG P2/m). Molecular docking studies were also described.
Acknowledgment
This work is a part of Ereen Adel Rezkallah M.Sc. thesis. The authors would like to thank Assiut University for the official technical and financial support.
References
1. C. M. Galmarini, J. R. Mackey, C. Dumontet, Lancet Oncol. 3 (2002) 415.10.1016/S1470-2045(02)00788-XSuche in Google Scholar
2. J. Carmichael, J. Walling, Eur. J. Cancer 33 (1997) S27.10.1016/S0959-8049(96)00392-9Suche in Google Scholar
3. M. D. Shelley, A. Cleves, T. J. Wilt, M. D. Mason, BJU Int. 108 (2011) 168.10.1111/j.1464-410X.2011.10341.xSuche in Google Scholar PubMed
4. T. Walter, A. M. Horgan, M. McNamara, L. Mckeever, T. Min, D. Hedley, S. Serra, M. K. Krzyzanowska, E. Chen, H. Mackey, R. Feld, M. Moore, J. J. Knox, Eur. J. Cancer 49 (2013) 329.10.1016/j.ejca.2012.08.003Suche in Google Scholar PubMed
5. G. Lombardi, F. Zustovich, F. Farinati, U. Cillo, A. Vitalel, G. Zanus, M. Donach, M. Farina, S. Zovato, D. Pastorelli, Cancer 117 (2011) 125.10.1002/cncr.25578Suche in Google Scholar PubMed
6. A. Maraveyas, J. Waters, R. Roy, D. Fyfe, D. Propper, F. Lofts, J. Sgouros, E. Gardiner, K. Wedgwood, C. Ettelaie, G. Bozas, Eur. J. Cancer 48 (2012) 1283.10.1016/j.ejca.2011.10.017Suche in Google Scholar PubMed
7. H. Q. Xiong, A. Rosenberg, A. LoBuglio, W. Schmidt, R. A. Wolff, J. Deustch, M. Needle, J. L. Abbruzzese, J. Clin. Oncol. 22 (2004) 2610.10.1200/JCO.2004.12.040Suche in Google Scholar PubMed
8. J. E. Frampton, A. J. Wagstaff, Am. J. Cancer 4 (2006) 395.10.2165/00024669-200504060-00006Suche in Google Scholar
9. L. de Sousa Cavalcante, G. Monterio, Eur. J. Pharmco. 741 (2014) 8.10.1016/j.ejphar.2014.07.041Suche in Google Scholar PubMed
10. G. J. Peters, Gemcitabine: Mechanism of Action and Resistance, in: A. M. Bergman, G. J. Peters (Eds.): Deoxynucleoside Analogs in Cancer Therapy, Humana Press Inc., Totowa, NJ (2006), pp. 225–251.10.1007/978-1-59745-148-2Suche in Google Scholar
11. G. R. Heal, Thermogravimetry and Derivative Thermogravimetry, in: P. J. Haines (Ed.): Principles of Thermal Analysis and Calorimetry, The Royal Society of Chemistry, Thomas Graham house, Cambridge (2002), pp. 10–54.10.1039/9781847551764-00010Suche in Google Scholar
12. S. Davoudizadeh, M. Sarsabili, K. Khezri, Z. Phys. Chem. 231 (2017) 1543.10.1515/zpch-2016-0812Suche in Google Scholar
13. K. Khezri, H. Mahdavi, Z. Phys. Chem. 230 (2016) 1499.10.1515/zpch-2015-0688Suche in Google Scholar
14. K. Khezri, H. Alijani, Y. Fazli, Z. Phys. Chem. 230 (2016) 111.10.1515/zpch-2015-0638Suche in Google Scholar
15. A. Khawam, D. R. Flangan, J. Pharm. Sci. 95 (2006) 472.10.1002/jps.20559Suche in Google Scholar PubMed
16. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox. Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT (2009).Suche in Google Scholar
17. A. D. Becke, J. Chem. Phys. 98 (1993) 5648.10.1063/1.464913Suche in Google Scholar
18. A. D. Becke, J. Chem. Phys. 104 (1996) 1040.10.1063/1.470829Suche in Google Scholar
19. A. D. Becke, Phys. Rev. A 38 (1988) 3098.10.1103/PhysRevA.38.3098Suche in Google Scholar
20. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37 (1988) 785.10.1103/PhysRevB.37.785Suche in Google Scholar
21. W. Koch, M. C. Holthausen, A Chemist’s Guide to Density Functional Theory, Wiley-VCH Verlag GmbH, Weinheim (2000).10.1002/3527600043Suche in Google Scholar
22. P. C. Hariharan, J. A. Pople, Theor. Chim. Acta. 28 (1973) 213.10.1007/BF00533485Suche in Google Scholar
23. R. Krishnan, J. S. Binkley, R. Seeger, J. A. Pople, J. Chem. Phys. 72 (1980) 650.10.1063/1.438955Suche in Google Scholar
24. T. Clark, J. Chandrasekhar, G. W. Spitznagel, P. v. R. Schleyer, J. Comput. Chem. 4 (1983) 294.10.1002/jcc.540040303Suche in Google Scholar
25. S. Abdalla, Y. Umar, I. Mokhtar, Z. Phys. Chem. 230 (2016) 867.10.1515/zpch-2015-0700Suche in Google Scholar
26. M. H. Jamr’oz, Vibrational Energy Distribution Analysis VEDA4, Warsaw (2004).Suche in Google Scholar
27. R. Dennington, T. Keith, J. Millam, Gauss View, Version 5, Semichem Inc., Shawnee Mission, KS (2009).Suche in Google Scholar
28. J. Rodriguez-Carvajal, Physica B 192 (1993) 55.10.1016/0921-4526(93)90108-ISuche in Google Scholar
29. A. E. Reed, L. A. Cartiss, F. K. Weinhold, Chem. Rev. 88 (1988) 899.10.1021/cr00088a005Suche in Google Scholar
30. C. Wu, J. You, X. Wang, J. Anal. Appl. Pyrolysis 130 (2018) 118.10.1016/j.jaap.2018.01.019Suche in Google Scholar
31. K. Fukui, Science 218 (1982) 747.10.1126/science.218.4574.747Suche in Google Scholar PubMed
32. T. Lu, F. Chen, J. Comput. Chem. 33 (2012) 580.10.1002/jcc.22885Suche in Google Scholar PubMed
33. B. Kosar, C. Albayrak, Spectrochim. Acta A: Mol. Biomol. Spectrosc. 78 (2011) 160.10.1016/j.saa.2010.09.016Suche in Google Scholar PubMed
34. R. G. Pearson, J. Org. Chem. 54 (1989) 1423.10.1021/jo00267a034Suche in Google Scholar
35. P. Greelings, F. D. Proft, W. Langenaeker, Chem. Rev. 103 (2003) 1793.10.1021/cr990029pSuche in Google Scholar PubMed
36. P. Muniappan, R. Meenaskshi, G. Rajavel, M. Arivazhangan, Spectrochim. Acta A: Mol. Biomol. Spect. 117 (2014) 739.10.1016/j.saa.2013.08.049Suche in Google Scholar PubMed
37. M. Kavimani, V. Balachandran, B. Narayana, K. Vanasundari, B. Revathi, Spectrochim. Acta A: Mol. Biomol. Spect. 190 (2018) 47.10.1016/j.saa.2017.09.005Suche in Google Scholar PubMed
38. A. B. Becke, K. E. Edgecombe, J. Chem. Phys. 92 (1990) 5397.10.1063/1.458517Suche in Google Scholar
39. M. Kavimani, V. Balachandran, B. Narayana, K. Vanasundari, B. Revathi, J. Mol. Struc. 1149 (2017) 59.10.1016/j.molstruc.2017.07.094Suche in Google Scholar
40. R. F. W. Bader, Atoms in Molecules. A Quantum Theory, Oxford University, Oxford (1990).10.1093/oso/9780198551683.001.0001Suche in Google Scholar
41. R. F. W. Bader, Chem. Rev. 91 (1991) 893.10.1021/cr00005a013Suche in Google Scholar
42. D. A. Kleinman, Phys. Rev. 126 (1962) 1977.10.1103/PhysRev.126.1977Suche in Google Scholar
43. R. H. Abu-Eittah, N. G. Zaki, M. M. A. Mohamed, L. T. Kamel, J. Anal. Appl. Pyrolysis 77 (2006) 1.10.1016/j.jaap.2005.06.004Suche in Google Scholar
44. G. Sudlow, D. J. Birkett, D. N. Wade, Mol. Pharmaco. 12 (1976) 1052.Suche in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (DOI: https://doi.org/10.1515/zpch-2018-1304).
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Lead Remediation Using Smart Materials. A Review
- Hydrothermal Synthesis of Zinc Doped Nickel Ferrites: Evaluation of Structural, Magnetic and Dielectric Properties
- Structural, Dielectric and Magnetic Studies of Perovskite [Gd1−xMxCrO3 (M = La, Co, Bi)] Nanoparticles: Photocatalytic Degradation of Dyes
- Decolourization of Reactive Dye from Aqueous Solution using Electrocoagulation: Kinetics and Isothermal Study
- Kinetics and Equilibrium Studies of Eriobotrya Japonica: A Novel Adsorbent Preparation for Dyes Sequestration
- Preparation, Characterization and Evaluation of Curcumin Nanodispersions Using Three Different Methods – Novel Subcritical Water Conditions, Spontaneous Emulsification and Solvent Displacement
- DFT and Thermal Decomposition Studies on Gemcitabine
Artikel in diesem Heft
- Frontmatter
- Lead Remediation Using Smart Materials. A Review
- Hydrothermal Synthesis of Zinc Doped Nickel Ferrites: Evaluation of Structural, Magnetic and Dielectric Properties
- Structural, Dielectric and Magnetic Studies of Perovskite [Gd1−xMxCrO3 (M = La, Co, Bi)] Nanoparticles: Photocatalytic Degradation of Dyes
- Decolourization of Reactive Dye from Aqueous Solution using Electrocoagulation: Kinetics and Isothermal Study
- Kinetics and Equilibrium Studies of Eriobotrya Japonica: A Novel Adsorbent Preparation for Dyes Sequestration
- Preparation, Characterization and Evaluation of Curcumin Nanodispersions Using Three Different Methods – Novel Subcritical Water Conditions, Spontaneous Emulsification and Solvent Displacement
- DFT and Thermal Decomposition Studies on Gemcitabine