Startseite Quantum Chemical and Electrochemical Evaluation of Alkyl Phosphine Oxide in Corrosion Inhibition of Carbon Steel in Formation Water
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Quantum Chemical and Electrochemical Evaluation of Alkyl Phosphine Oxide in Corrosion Inhibition of Carbon Steel in Formation Water

  • A. M. Abdel Nour , N. A. Negm EMAIL logo , G. H. Sayed , S. M. Tawfik und E. A. Badr
Veröffentlicht/Copyright: 21. Februar 2019

Abstract

In this study, quantum chemical calculations and molecular dynamics simulations studies of a series of five nonionic surfactants namely: dimethyl alkyl phosphine oxide surfactants (C10-18PO) containing decyl, dodecyl-, tetradecyl-, hexadecyl-, and octadecyl alkyl chains were implemented using the density functional theory (DFT) method to interpret the correlation between the inhibition efficiency and the molecular structure of the different inhibitors in formation water. The global quantities including: highest occupied molecular orbital energy (HOMO), lowest unoccupied molecular orbital energy (LUMO), energy gap (ΔE), dipole moment (μ), total energy (TE), ionization potential (I), electron affinity (A), electronegativity (χ), chemical potential (π), global hardness (η), global softness (σ), global electrophilicity (ω), polarizabilities <α> and fraction of electrons transferred (ΔN) were calculated for the different inhibitors in formation water. The dependence of surface activities of the nonionic surfactants on the alkyl chain length was studied in distilled water. The surface activities and surface parameters of the studied surfactants were described using: surface tension and interfacial tension measurements. The determined surface parameters of the studied surfactants were surface tension, critical micelle concentration, effectiveness, efficiency, maximum surface excess and minimum surface area at 25 °C. The thermodynamic evaluation of the surfactants was performed by calculating the standard free energies of micellization and adsorption. The structure-corrosion inhibition performance was estimated using potentiodynamic polarization, electrochemical impedance measurements and quantum chemical studies at 25 °C in true sample formation water.

Acknowledgement

Authors acknowledge petrochemicals department, Egyptian petroleum research institute for the supporting of the study.

References

1. E. F. Moura, A. O. W. Neto, T. N. C. Dantas, H. Scatena Jr., A. Gurgel, Colloids Surf. A: Physicochem. Eng. Aspects 340 (2009) 199.10.1016/j.colsurfa.2009.03.031Suche in Google Scholar

2. D. M. Brasher, A. D. Mercer, Br. Corros. J. 3 (1968) 120.10.1179/000705968798326271Suche in Google Scholar

3. M. Abdallah, Corros. Sci. 45 (2003) 2705.10.1016/S0010-938X(03)00107-0Suche in Google Scholar

4. M. A. Quraishi, R. Sardar, Mater. Chem. Phys. 78 (2002) 425.10.1016/S0254-0584(02)00299-7Suche in Google Scholar

5. M. Sahin, S. Bilgic, H. Yılmaz, Appl. Surf. Sci. 195 (2002) 1.10.1016/S0169-4332(01)00783-8Suche in Google Scholar

6. A. Yurt, A. Balaban, Mater. Chem. Phys. 85 (2004) 420.10.1016/j.matchemphys.2004.01.033Suche in Google Scholar

7. E. Bayol, T. Gtenb, A. Ali Gtena, M. Erbil, Mater. Chem. Phys 112 (2008) 624.10.1016/j.matchemphys.2008.06.012Suche in Google Scholar

8. L. M. Rodrıguez-Valdez, W. Villamisar, M. Casales, J. G. Gonzalez-Rodriguez, A. Martınez-Villafane, L. Martinez, D. Glossman-Mitnik, Corros. Sci. 48 (2006) 4053.10.1016/j.corsci.2006.05.036Suche in Google Scholar

9. P. C. Okafor, X. Liu, Y. G. Zheng, Corros. Sci. 51 (2009) 761.10.1016/j.corsci.2009.01.017Suche in Google Scholar

10. M. M. Osman, M. N. Shalaby, Anti-Corros. Methods Mater. 44 (1997) 318.10.1108/00035599710177619Suche in Google Scholar

11. M. Elachouri, M. S. Hajji, M. Salem, S. Kertit, J. Aride, R. Coudert, E. Essassi, Corrosion 52 (1996) 103.10.5006/1.3292100Suche in Google Scholar

12. A. S. Algaber, E. M. El-Nemma, M. M. Saleh, Mater. Chem. Phys. 6 (2004) 26.10.1016/j.matchemphys.2004.01.040Suche in Google Scholar

13. M. Guannan, L. Xianghong, J. Colloid Interface Sci. 289 (2005) 184.10.1016/j.jcis.2005.03.061Suche in Google Scholar PubMed

14. L. Xianghong, M. Guannan, Appl. Surf. Sci. 252 (2005) 1254.10.1016/j.apsusc.2005.02.118Suche in Google Scholar

15. M. A. Migahed, H. M. Mohamed, A. M. Al-Sabag, Mater. Chem. Phys. 80 (2003) 169.10.1016/S0254-0584(02)00456-XSuche in Google Scholar

16. M. A. Migahed, M. Abd-El-Raouf, A. M. Al-Sabag, H. M. Abd-El-Bary, Electrochim. Acta 50 (2005) 4683.10.1016/j.electacta.2005.02.021Suche in Google Scholar

17. A. M. Alsabagh, M. A. Migahed, H. S. Awad, Corros. Sci. 48 (2006) 813.10.1016/j.corsci.2005.04.009Suche in Google Scholar

18. M. A. Migahed, N. A. Negm, M. M. Shaban, T. A. Ali, A. A. Fadda, J. Surfact Deterg. 19 (2016) 119.10.1007/s11743-015-1749-8Suche in Google Scholar

19. N. A. Negm, M. A. Migahed, R. K. Farag, A. A. Fadda, M. K. Awad, M. M. Shaban, J. Mol. Liq. 262 (2018) 363.10.1016/j.molliq.2018.04.092Suche in Google Scholar

20. J. R. Scully, D. C. Silverman, M. W. Kending, Edn. ASTM, STP 1188 USA (1993).Suche in Google Scholar

21. M. Ozcan, J. Dehri, M. Erbil, Appl. Surf. Sci. 236 (2004) 155.10.1016/j.apsusc.2004.04.017Suche in Google Scholar

22. G. H. Sayed, M. E. Azab, K. E. Anwer, M. Abdel Raouf, N. A. Negm, J. Mol. Liq. 252 (2018) 329.10.1016/j.molliq.2017.12.156Suche in Google Scholar

23. N. A. Negm, M. A. El Hashash, A. Abd-Elaal, S. M. Tawfik, A. Gharieb, J. Mol. Liq. 256 (2018) 574.10.1016/j.molliq.2018.02.078Suche in Google Scholar

24. T. Chakraborty, I. Chakraborty, S. Ghosh, Arab. J. Chem. 4 (2011) 265.10.1016/j.arabjc.2010.06.045Suche in Google Scholar

25. N. A. Negm, A. S. Mohamed, J. Surfact Deterg. 7 (2004) 23.10.1007/s11743-004-0284-zSuche in Google Scholar

26. N. A. Negm, A. F. M. El-Farargy, S. M. Tawfik, A. M. Abdelnour, H. H. Hefni, J. Surfact Deterg. 16 (2013) 333.10.1007/s11743-012-1412-6Suche in Google Scholar

27. N. A. Negm, A. S. Mohamed, J. Surfact Deterg. 11 (2008) 215.10.1007/s11743-008-1071-9Suche in Google Scholar

28. H. M. Abd El-Lateef, M. Ismael, A. H. Tantawy, Z. Phys. Chem. 230 (2016) 1111.10.1515/zpch-2015-0616Suche in Google Scholar

29. D. Dianno, Y. Talmon, R. Zana, Langmuir 11 (1995) 1448.10.1021/la00005a008Suche in Google Scholar

30. G. Bai, J. Wang, L. Z. Yan, R. K. Thomas, J. Phys. Chem. 105 (2001) 3105.10.1021/jp0043017Suche in Google Scholar

31. G. H. Sayed, F. M. Ghuiba, M. I. Abdou, E. A. Badr, S. M. Tawfik, N. A. Negm, J. Surfact Deterg. 15 (2012) 735.10.1007/s11743-012-1375-7Suche in Google Scholar

32. N. A. Negm, S. M. Tawfik, Chimica Oggi/Chemistry Today 30 (2012) 5.Suche in Google Scholar

33. N. A. Negm, N. G. Kandile, M. A. Mohamad, J. Surfact. Deterg. 14 (2011) 325.10.1007/s11743-011-1249-4Suche in Google Scholar

34. N. A. Negm, M. F. Zaki, M. M. Said, S. M. Morsy, Corros. Sci. 53 (2011) 4233.10.1016/j.corsci.2011.08.034Suche in Google Scholar

35. N. A. Negm, F. M. Ghuiba, S. M. Tawfik, Corros. Sci. 53 (2011) 3566.10.1016/j.corsci.2011.06.029Suche in Google Scholar

36. N. A. Negm, N. G. Kandile, I. A. Aiad, M. A. Mohammad, Colloids Surf. A: Physicochem. Eng. Aspects 391 (2011) 224.10.1016/j.colsurfa.2011.09.032Suche in Google Scholar

37. M. Nagel, G. S. Hickey, A. Frömsdorf, A. Kornowski, H. Weller, Z. Phys. Chem. 221 (2007) 427.10.1524/zpch.2007.221.3.427Suche in Google Scholar

38. S. M. Tawfik, N. A. Negm, J. Mol. Liq. 215 (2016) 185.10.1016/j.molliq.2015.12.030Suche in Google Scholar

39. M. A. Hegazy, A. M. Hassan, M. M. Emara, M. F. Bakr, A. H. Youssef, Corros. Sci. 65 (2012) 67.10.1016/j.corsci.2012.08.005Suche in Google Scholar

40. V. S. Agarwala, K. C. Tripathi, Z. Phys. Chem. 234 (2017) 193.10.1515/zpch-1967-23423Suche in Google Scholar

41. S. S. Abd El-Rehim, H. H. Hassan, M. A. M. Deyab, A. Abd El Moneim, Z. Phys. Chem. 230 (2016) 67.10.1515/zpch-2015-0614Suche in Google Scholar

42. P. C. Hariharan, J. A. Pople, Theor. Chim. Acta 28 (1973) 213.10.1007/BF00533485Suche in Google Scholar

43. B. Miehlich, A. Savin, H. Stoll, H. Preuss, Chem. Phys. Lett. 157 (1989) 200.10.1016/0009-2614(89)87234-3Suche in Google Scholar

44. C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 37 (1988) 785.10.1103/PhysRevB.37.785Suche in Google Scholar

45. N. O. Eddy, E. E. Ebenso, J. Mol. Model. 16 (2010) 1291.10.1007/s00894-009-0635-6Suche in Google Scholar PubMed

46. M. Abd El-Raouf, E.A Khamis, M. T. H. Abou Kana, N. A. Negm, J. Mol. Liq. 255 (2018) 341.10.1016/j.molliq.2018.01.148Suche in Google Scholar

47. A. R. Hoseizadeh, I. Danaee, M. H. Maddahy, Z. Phys. Chem. 227 (2013) 403.10.1524/zpch.2013.0276Suche in Google Scholar

48. I. Lukovits, A. Shaban, E. Kalman, Russ. J. Electrochem. 39 (2003) 177.10.1023/A:1022313126231Suche in Google Scholar

49. S. Xia, M. Qiu, L. Yu, F. Liu, H. Zhao, Corros. Sci. 50 (2008) 2021.10.1016/j.corsci.2008.04.021Suche in Google Scholar

50. K. F. Khaled, Electrochim. Acta 53 (2008) 3484.10.1016/j.electacta.2007.12.030Suche in Google Scholar

51. S. K. Rajak, N. Islam, D. C. Ghosh, J. Quantum Inform. Sci. 1 (2011) 87.10.4236/jqis.2011.12012Suche in Google Scholar

52. K. Zakaria, N. A. Negm, E. A. Khamis, E. A. Badr, J. Taiwan Inst. Chem. Eng. 61 (2016) 316.10.1016/j.jtice.2015.12.021Suche in Google Scholar

Received: 2018-09-04
Accepted: 2019-02-02
Published Online: 2019-02-21
Published in Print: 2019-12-18

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 3.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2018-1296/html
Button zum nach oben scrollen