Home Phytochemical Synthesis of Silver Nanoparticles Using Anthemis Nobilis Extract and Its Antibacterial Activity
Article
Licensed
Unlicensed Requires Authentication

Phytochemical Synthesis of Silver Nanoparticles Using Anthemis Nobilis Extract and Its Antibacterial Activity

  • Saba Ghamipoor , Faeze Fayyazi EMAIL logo and Saeed Bahadorikhalili
Published/Copyright: August 9, 2019

Abstract

In this work, green synthesis of silver nanoparticles is described by phytochemical reducing silver nitrate aqueous solution using Anthemis nobilis. For this purpose, Anthemis nobilis extract was used for the synthesis of silver nanoparticles as both surfactant and reducing agent. Green synthesis method is a good alternative to physical and chemical methods, since it is fast, simple, environmentally-friendly and economic. The produced nanoparticles are identified using FE-SEM, EDX, and FT-IR and Uv/Vis techniques. Formation of silver nanoparticles is verified in 430–420 nm range. Reduction of silver ions by hydroxyl functional group is also confirmed by FT-IR device. EDX device confirms the presence of a peak for Ag element without any impurity peak. Silver nanoparticles are identified by FE-SEM device and found to have average size between 17 and 42 nm. Also, the antibacterial activity of the synthesized nanoparticles is compared with that of staphyloccusaureus and pseudomonasa aeruginosa and the maximum inhibitory activity against the bacteria is obtained using 1 mM nitrate solution.

Acknowledgement

The authors would like to thank the laboratory of Islamic Azad University, Science and Research Branch, for providing the required laboratory equipment. We also acknowledge Ms. Shima Shakuri Asl, supervisor of FT-IR and Uv/Vis devices, as well as Razi Applied Science Foundation for providing us with FE-SEM and EDX devices. Finally, the authors should express their gratitude to Mr. Behnam Rahmani, head of Electron Microscopy laboratory.

References

1. W. Jahn, J. Struct. Biol. 127 (1999) 106.10.1006/jsbi.1999.4123Search in Google Scholar PubMed

2. N. Saifuddin, C. W. Wong, A. A. Yasumira, J. Chem. 6 (2009) 61.Search in Google Scholar

3. C. J. Orendorff, C. J. Murphy, J. Phys. Chem. B 110 (2006) 3990.10.1021/jp0570972Search in Google Scholar PubMed

4. A. Leela, M. Vivekanandan, African J. Biotec. 7 (2008) 1121.Search in Google Scholar

5. C. Ruhmlieb, A. Rieckmann, C. Strelow, T. Kipp, A. Mews, Z. Phys. Chem. 232 (2018) 1295.10.1515/zpch-2018-1191Search in Google Scholar

6. V. Parashar, R. Parashar, B. Sharma, A. C. Pandey, Dig. J. Nanomater. Biostruct. 4 (2009) 45.Search in Google Scholar

7. I. Mesgarzadeh, A. R. Akbarzadeh, R. Rahimi, A. Maleki, Z. Phys. Chem. 232 (2018) 209.10.1515/zpch-2017-0970Search in Google Scholar

8. T. Kodanek, A. Freytag, A. Schlosser, S. Naskar, T. Härtling, D. Dorfs, N. C. Bigall, Z. Phys. Chem. 232 (2018) 1675.10.1515/zpch-2017-1045Search in Google Scholar

9. C. Heard, A. Shayeghi, R. Schäfer, R. Johnston, Z. Phys. Chem. 230 (2016) 955.10.1515/zpch-2015-0721Search in Google Scholar

10. S. Christau, J. Genzer, R. von Klitzing, Z. Phys. Chem. 229 (2015) 1089.10.1515/zpch-2014-0573Search in Google Scholar

11. R. Singh, H. S. Nalwa, J. Biomed. Nanotechnol. 7 (2011) 489.10.1166/jbn.2011.1324Search in Google Scholar PubMed

12. M. Rai, A. Yadav, A. Gade, Biotechnol. Adv. 27 (2009) 76.10.1016/j.biotechadv.2008.09.002Search in Google Scholar PubMed

13. J. L. Elechiguerra, J. L. Burt, J. R. Morones, A. Camacho-Bragado, X. Gao, H. H. Lara, M. J. Yacaman, J. Nanobiotec. 3 (2005) 1.10.1186/1477-3155-3-6Search in Google Scholar PubMed PubMed Central

14. R. M. Crooks, B. I. Lemon III, L. Sun, L. K. Yeung, M. Zhao, In: Dendrimers III, Springer Berlin Heidelberg, Germany (2001), P. 81–135.10.1007/3-540-44924-8_3Search in Google Scholar

15. D. I. Gittins, D. Bethell, R. J. Nichols, D. J. Schiffrin, J. Mater. 10 (2000) 79.10.1039/a902960eSearch in Google Scholar

16. S. B. Khalili, A. R. Sardarian, Monatsh. Chem. 143 (2012) 841.10.1007/s00706-011-0647-7Search in Google Scholar

17. V. P. Stepanov, V. I. Minchenko, Z. Phys. Chem. 231 (2017) 971.10.1515/zpch-2015-0744Search in Google Scholar

18. J. Lin, W. L. Zhou, C. J. O’Connor, In: Cluster Nanostruct. Interfac. World Scientific, Singapore (2000), P. 405–410.10.1142/9789812793805_0051Search in Google Scholar

19. K. Esumi, T. Tano, K. Torigoe, K. Meguro, Chem. Mater. 2 (1990) 564.10.1021/cm00011a019Search in Google Scholar

20. A. Henglein, Langmuir 17 (2001) 2329.10.1021/la001081fSearch in Google Scholar

21. L. Rodriguez-Sanchez, M. C. Blanco, M. A. Lopez-Quintela, J. Phys. Chem. B 104 (2000) 9683.10.1021/jp001761rSearch in Google Scholar

22. M. Saeed, M. A. Jamal, N. Akram, T. H. Bokhari, U. Afaq, Z. Phys. Chem 233 (2008) 1047.10.1515/zpch-2018-1226Search in Google Scholar

23. J. Zhu, S. Liu, O. Palchik, Y. Koltypin, A. Gedanken, Langmuir 16 (2000) 6396.10.1021/la991507uSearch in Google Scholar

24. I. Pastoriza-Santos, L. M. Liz-Marzán, Langmuir 18 (2002) 2888.10.1021/la015578gSearch in Google Scholar

25. N. A. Begum, S. Mondal, S. Basu, R. A. Laskar, D. Mandal, Colloids Surf. B 71 (2009) 113.10.1016/j.colsurfb.2009.01.012Search in Google Scholar PubMed

26. H. Bar, D. K. Bhui, G. P. Sahoo, P. Sarkar, S. P. De, A. Colloids Surf. A 339 (2009) 134.10.1016/j.colsurfa.2009.02.008Search in Google Scholar

27. J. Y. Song, B. S. Kim, Bioprocess. Biosyst. Eng. 32 (2009) 79.10.1007/s00449-008-0224-6Search in Google Scholar PubMed

28. N. Vigneshwaran, N. M. Ashtaputre, P. V. Varadarajan, R. P. Nachane, K. M. Paralikar, R. H. Balasubramanya, Mater. Let. 61 (2007) 1413.10.1016/j.matlet.2006.07.042Search in Google Scholar

29. P. Mohanpuria, N. K. Rana, S. K. Yadav, J. Nanopart. Res. 10 (2008) 507.10.1007/s11051-007-9275-xSearch in Google Scholar

30. S. S. Shankar, A. Rai, A. Ahmad, M. Sastry, J. Colloid. Interface. Sci. 275 (2004) 496.10.1016/j.jcis.2004.03.003Search in Google Scholar PubMed

31. D. Jain, H. K. Daima, S. Kachhwaha, S. L. Kothari, Dig. J. Nanomater. Biostruct. 4 (2009) 557.Search in Google Scholar

32. C. Elsner, D. Hintzen, A. Prager, K. R. Siefermann, B. Abel, Z. Phys. Chem. 229 (2015) 427.10.1515/zpch-2014-0639Search in Google Scholar

33. M. Karimi, S. Davoudizadeh, S. Bahadorikhalili, K. Khezri, Z. Phys. Chem. 233 (2018) 393.10.1515/zpch-2018-1202Search in Google Scholar

34. N. Saifuddin, C. W. Wong, A. A. Yasumira, Aust. J. Chem. 6 (2009) 61.10.1155/2009/734264Search in Google Scholar

35. A. Gültekin, S. Sönmezoğlu, Z. Phys. Chem. 228 (2014) 649.10.1515/zpch-2014-0471Search in Google Scholar

36. A. Shahraki, S. Bahadorikhalili, M. Hashemzaei, M. Hajinezhad, A. Afsharimoghaddam, F. Sarani, O. Tajrobekar, Biosci. Biotechnol. Res Commun 10 (2017) 623.10.21786/bbrc/10.4/4Search in Google Scholar

37. I. Willner, B. Basnar, B. Willner, Febs J. 274 (2007) 302.10.1111/j.1742-4658.2006.05602.xSearch in Google Scholar PubMed

38. A. Stephen, S. Seethalakshmi, J. Nanosci. 2013 (2013) 6.10.1155/2013/126564Search in Google Scholar

39. P. V. AshaRani, G. Low Kah Mun, M. P. Hande, S. Valiyaveettil, ACS nano 3 (2008) 279.10.1021/nn800596wSearch in Google Scholar PubMed

40. K. Bethke, S. Palantöken, V. Andrei, M. Roß, V. S. Raghuwanshi, F. Kettemann, K. Greis, T. T. Ingber, J. B. Stückrath, S. Valiyaveettil, K. Rademann, Adv. Funct. Mater. 28 (2018) 1800409. DOI: https://doi.org/10.1002/adfm.201800409.10.1002/adfm.201800409Search in Google Scholar

41. S. L. Percival, P. G. Bowler, D. Russell, J. Hospital Infect. 60 (2005) 1.10.1016/j.jhin.2004.11.014Search in Google Scholar PubMed

Received: 2018-08-25
Accepted: 2019-07-15
Published Online: 2019-08-09
Published in Print: 2020-03-26

©2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 6.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/zpch-2018-1288/html?lang=en
Scroll to top button