Photoluminescence, Third-Order Nonlinear Optical and DFT Studies of Hydrazonium L-Tartrate – Combined Experimental and Theoretical Studies
Abstract
Isothermal solvent evaporation method was employed to grow Undeuterated Hydrazonium L-tartrate (HLT) single crystals using water:methanol (5:1) solution as a solvent. The proton and carbon positions of HLT have been revealed by 1H and 13C NMR spectrum, respectively. The energy emission behaviour of HLT were analysed by photoluminescence spectrum. The nonlinear refractive index (n2), nonlinear absorption coefficient (β) and third order nonlinear susceptibility (χ3) of HLT single crystal were determined by adapting Z-scan technique. Quantum chemical calculations on HLT was carried out by DFT using B3LYP/6-311++G(d,p) basis set. The predicted first hyperpolarizability of HLT is found to be 1.09 times greater than that of urea and suggests that HLT could be an attractive material for NLO applications. The predicted HOMO-LUMO energies of HLT confirmed that charge transfers occur within the molecule. The molecular bond strength and stability of the title compound were analysed by employing NBO analysis. The other molecular properties such as Mulliken atomic charge, ESP map, thermodynamic functions and perturbation theory energy have also been investigated. These investigations have been carried out for the first time, to the best our knowledge, in order to study the nonlinear optical properties of HLT and to enhance its usefulness for NLO applications.
Acknowledgements
The authors are grateful to Department of Science and Technology (DST), New Delhi, India, for their financial support through the grant SR/S2/CMP–0028/2011, Dt.1–12–2011. The authors thank the SAIF, IIT Madras, Chennai, for extending their help in recording the vibrational spectra. The authors are thankful to Dr. D. Sastikumar, Department of Physics, National Institute of Technology Tiruchirappalli (NITT) for extending the facility to carry out Z-scan studies.
References
1. S. Brahadeeswaran, V. Venkataramanan, H. L. Bhat, J. Cryst. Growth 205 (1999) 548.10.1016/S0022-0248(99)00302-4Suche in Google Scholar
2. Y. Takahashi, H. Adachi, T. Taniuchz, M. Takagi, O. Hosokawa, S. Onzuka, S. Brahadeeswaran, M. Yoshimura, Y. Mori, H. Masuhara, T. Sasaki, H. Nakanishi, J. Photochem. Photobiol. A: Chem. 183 (2006) 247.10.1016/j.jphotochem.2006.03.027Suche in Google Scholar
3. V. Kannan, K. Thriupugalmani, G. Shanmugam, S. Brahadeeswaran, J. Therm. Anal. Calorim. 115 (2013) 731.10.1007/s10973-013-3269-ySuche in Google Scholar
4. V. Kannan, S. Brahadeeswaran, J. Therm. Anal. Calorim. 124 (2015) 889.10.1007/s10973-015-5174-zSuche in Google Scholar
5. C. B. Aakeroy, P. B. Hitchcock, K. R. Seddon, J. Chem. Soc. Chem. Commun. 7 (1992) 553.10.1039/C39920000553Suche in Google Scholar
6. J. Zyss, J. Peacaut, J. P. Levy, R. Masse, Acta Cryst. B49 (1993) 342.10.1107/S0108768192008395Suche in Google Scholar
7. J. A. Marshall, G. P. Luke, Synlett. 12 (1992) 1007.10.1055/s-1992-21565Suche in Google Scholar
8. H. K. Fun, K. Sivakumar, Y. Z. Jiang, J. Sun, Z. Y. Zhou, Acta Cryst. C51 (1995) 2085.10.1107/S0108270195005488Suche in Google Scholar
9. V. Subhashini, S. Ponnusamy, C. Muthamizhchelvan, J. Cryst. Growth 363 (2013) 211.10.1016/j.jcrysgro.2012.10.045Suche in Google Scholar
10. N. Elavarasu, S. Karuppusamy, S. Muralidharan, M. Anantharaja, R. Gopalakrishnan, Opt. Mater. 46 (2015) 141.10.1016/j.optmat.2015.03.060Suche in Google Scholar
11. K. Thukral, N. Vijayan, B. Singh, I. Bdikin, D. Haranath, K. K. Maurya, J. Philip, H. Soumya, P. Sreekanthf, G. Bhagavannarayana, CrystEngComm 16 (2014) 9245.10.1039/C4CE01232ASuche in Google Scholar
12. M. Delfino, J. C. Jacco, P. S. Gentile, D. D. Bray, J. Solid State Chem. 21 (1977) 243.10.1016/0022-4596(77)90202-XSuche in Google Scholar
13. V. Kannan, S. Brahadeeswaran, J. Cryst. Growth 374 (2013) 71.10.1016/j.jcrysgro.2013.03.039Suche in Google Scholar
14. V. Kannan, R. Rakhikrishna, J. Philip, S. Brahadeeswaran, J. Therm. Anal. Calorim. 116 (2013) 339.10.1007/s10973-013-3444-1Suche in Google Scholar
15. V. Kannan, S. Brahadeeswaran, J. Chem. Pharm. Sci. 11 (2015) 195.Suche in Google Scholar
16. R. Thirumurugan, B. Babu, K. Anitha, J. Chandrasekaran, Z. Phys. Chem. 231 (2017) 1849.10.1515/zpch-2016-0896Suche in Google Scholar
17. M. Barańska, K. Chruszcz, B. Boduszek, L. M. Proniewicz, Vib. Spectrosc. 31 (2003) 295.10.1016/S0924-2031(03)00025-0Suche in Google Scholar
18. V. Kannan, K. Thriupugalmani, S. Brahadeeswaran, J. Mol. Struct. 1049 (2013) 268.10.1016/j.molstruc.2013.06.055Suche in Google Scholar
19. M. Sheik-Bahae, A. A. Said, E. W. VanStryl, Opt. Lett. 14 (1989) 955.10.1364/OL.14.000955Suche in Google Scholar
20. E. W. Van Stryland, M. Sheik-Bahae, Z-Scan Measurements of Optical Nonlinearities, In Characterization Techniques and Tabulations for Organic Nonlinear Materials, M. G. Kuzyk, C. W. Dirk, Eds. Marcel Dekker, Inc., New York (1998), pp. 655–692.Suche in Google Scholar
21. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision B.01, Gaussian Inc., Pittsburgh, PA (2003).Suche in Google Scholar
22. GAUSSIAN 03 Program, GAUSSIAN Inc., Wallingford (2004).Suche in Google Scholar
23. MERCURY 1.3, Cambridge Crystallographic Data Centre, CCDC Software Limited, Cambridge, UK (2004).Suche in Google Scholar
24. D. A. Kleinman, Phys. Rev. 126 (1962) 1977.10.1103/PhysRev.126.1977Suche in Google Scholar
25. G. Shanmugam, M. S. Belsley, D. Isakov, E. de Matos Gomes, K. Nehru, S. Brahadeeswaran, Spectrochim. Acta Part A 114 (2013) 284.10.1016/j.saa.2013.05.070Suche in Google Scholar PubMed
26. A. E. Reed, F. Weinhold, J. Chem. Phys. 83 (1985) 1736.10.1063/1.449360Suche in Google Scholar
27. L. J. Bellamy, The Infrared Spectra of Complex Molecules, John Wiley & Sons Inc., New York (1975).10.1007/978-94-011-6017-9Suche in Google Scholar
28. T. W. Panunto, Z. Urbanczyk-Lipkowska, R. Johnson, M. C. Etter, J. Am. Chem. Soc. 109 (1987) 7786.10.1021/ja00259a030Suche in Google Scholar
29. M. C. Etter, P. W. Baures, J. Am. Chem. Soc. 110 (1988) 639.10.1021/ja00210a076Suche in Google Scholar
30. F. Pan, M. S. Wong, C. Bosshard, P. Gunter, V. Gramlich, Adv. Mater. Opt. Electron. 6 (1996) 261.10.1002/(SICI)1099-0712(199609)6:5/6<261::AID-AMO279>3.0.CO;2-KSuche in Google Scholar
31. M. S. Wong, F. Pan, V. Gramlich, C. Bosshard, P. Gunter, Adv. Mater. 9 (1997) 554.10.1002/adma.19970090707Suche in Google Scholar
32. M. S. Wong, F. Pan, M. Bosch, R. Spreiter, C. Bosshard, P. Gunter, V. Gramlich, J. Opt. Soc. Am. B 15 (1998) 426.10.1364/JOSAB.15.000426Suche in Google Scholar
33. G. Socrates, Infrared and Raman Characteristic Group Frequencies, 3rd ed., Wiley, New York (2001).Suche in Google Scholar
34. Z. Dega-Szafran, Z. Fojud, A. Katrusiak, M. Szafran, J. Mol. Struct. 928 (2009) 99.10.1016/j.molstruc.2009.03.021Suche in Google Scholar
35. C. Gnanasambandam, S. Perumal, J. Cryst. Growth 312 (2010) 1599.10.1016/j.jcrysgro.2010.02.004Suche in Google Scholar
36. M. K. Marchewka, S. Debrus, A. Pietraszko, A. J. Barnes, H. Ratajczak, J. Mol. Struct. 656 (2003) 265.10.1016/S0022-2860(03)00352-1Suche in Google Scholar
37. R. Nagalakshmi, V. Krishnakumar, H. Hagemann, S. Muthunatesan, J. Mol. Struct. 988 (2011) 17.10.1016/j.molstruc.2010.11.056Suche in Google Scholar
38. D. N. Sathyanarayana, Vibrational Spectroscopy Theory and Applications, 2nd ed., New Age International (p) Limited Publishers, New Delhi (2004).Suche in Google Scholar
39. Y. R. Sharma, Elementary Organic Spectroscopy, 4th ed., S. Chand, New Delhi (2007).Suche in Google Scholar
40. M. K. Marchewka, J. Baran, A. Pietraszko, A. Haznar, S. Debrus, H. Ratajczak, Solid State Sci. 5 509 (2003).10.1016/S1293-2558(03)00029-3Suche in Google Scholar
41. V. Subhashini, S. Ponnusamy, C. Muthamizhchelvan, Spectrochim. Acta A 87 265 (2012).10.1016/j.saa.2011.11.050Suche in Google Scholar
42. Y. Gong, Y. Zhou, J. Qin, J. Li, R. Cao, J. Mol. Struct. 963 (2010) 76.10.1016/j.molstruc.2009.10.017Suche in Google Scholar
43. W. Chen, J. Y. Wang, C. Chen, Q. Yue, H. M. Yuan, J. S. Chen, S. N. Wang, Inorg. Chem. 42 (2003) 944.10.1021/ic025871jSuche in Google Scholar
44. G. Shanmugam, S. Brahadeeswaran, Spectrochim. Acta Part A 95 (2012) 177.10.1016/j.saa.2012.04.100Suche in Google Scholar
45. V. M. Longo, L. S. Cavalcante, R. Erlo, V. R. Mastelaro, A. T. de Figueiredo, J. R. Sambrano, S. de Lazaro, A. Z. Freitas, L. Gomes, N. D. Vieira, J. A. Varela, E. Longo, Acta Mater. 56 (2008) 2191.10.1016/j.actamat.2007.12.059Suche in Google Scholar
46. H. M. Cheng, H. C. Hsu, Y. K. Tseng, L. J. Lin, W. F. Hsieh, J. Phys. Chem. B 109 (2005) 8749.10.1021/jp0442908Suche in Google Scholar
47. M. S. Silva, M. Cilense, E. Orhan, M. S. Goes, M. A. C. Machado, L. P. S. Santos, C. O. P. Santos, E. Longo, J. A. Varela, M. A. Zaghete, P. S. Pizani, J. Lumin. 111 (2005) 205.10.1016/j.jlumin.2004.08.045Suche in Google Scholar
48. S. Dai, J. Yang, L. Wen, L. Hu, Z. Jiang, J. Lumin. 104 (2003) 55.10.1016/S0022-2313(02)00664-6Suche in Google Scholar
49. V. Capozzi, M. Santoroa, G. Celentanoa, H. Bergerb, G. F. Lorussoh, J. Lumin. 76–77 (1998) 395.10.1016/S0022-2313(97)00224-XSuche in Google Scholar
50. R. W. Boyd, Nonlinear Optics, Academic Press, Amsterdam (2003).Suche in Google Scholar
51. P. Srinivasan, A. Y. Nooraldeen, A. N. Dhinaa, P. K. Palanisamy, R. Gopalakrishnan, Laser Phys. 18 (2008) 790.10.1134/S1054660X08060169Suche in Google Scholar
52. P. V. Dhanaraj, N. P. Rajesh, G. Vinitha, G. Bhagavannarayana, Mater. Res. Bull. 46 (2011) 726.10.1016/j.materresbull.2011.01.013Suche in Google Scholar
53. L. A. Kulagin, R. A. Ganeev, R. I. Tugushev, A. I. Ryasnyansky, T. Usmanov, Quantum Electron. 34 (2004) 657.10.1070/QE2004v034n07ABEH002823Suche in Google Scholar
54. S. Iyasamy, K. Varadharajan, S. Sivagnanam, Z. Phys. Chem. 230 (2016) 1681.10.1515/zpch-2016-0839Suche in Google Scholar
55. G. Shanmugam, K. Thirupugalmani, V. Kannan, S. Brahadeeswaran, Spectrochim. Acta A 106 (2013) 175.10.1016/j.saa.2013.01.006Suche in Google Scholar PubMed
56. R. G. Parr, L. Szentpaly, S. Liu, J. Am. Chem. Soc. 121 (1999) 1922.10.1021/ja983494xSuche in Google Scholar
57. S. Panchapakesan, S, Karthick, S. Brahadeeswaran, J. Mater. Sci. Mater. Electron. 28 (2017) 5754.10.1007/s10854-016-6247-xSuche in Google Scholar
58. S. Karthick, K. Thirupugalmani, G. Shanmugam, V. Kannan, S. Brahadeeswaran, J. Mol. Struct. 1156 (2018) 264.10.1016/j.molstruc.2017.11.115Suche in Google Scholar
59. K. Adjir, M. S. Rahal, A. Moncomble, J. P. Cornard, Z. Phys. Chem. 230 (2016) 883.10.1515/zpch-2015-0709Suche in Google Scholar
60. E. Zahedi, K. Zare, H. Aghaie, S. R. Emamian, A. Shiroudi, M. Aghaie, Z. Phys. Chem. 226 (2012) 47.10.1524/zpch.2011.0153Suche in Google Scholar
61. A. S. Rad, M. Esfahanian, E. Ganjian, H. Tayebi, Z. Phys. Chem. 230 (2016) 1487.10.1515/zpch-2015-0645Suche in Google Scholar
Supplementary Material
The online version of this article offers supplementary material (DOI: https://doi.org/10.1515/zpch-2018-1231).
©2019 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Structural and Optical Properties of Multilayer Heterostructure of CdTe/CdSe Thin Films
- Thermal and Rheological Study of Nanocomposites, Reinforced with Bi-Phase Ceramic Nanoparticles
- Influence of Electron Injection Rate in Triphenylamine Based Dye for Dye-Sensitized Solar Cells: A First Principle Study
- Nickel Oxide-incorporated Polyaniline/Polyvinyl Alcohol Composite for Enhanced Antibacterial Activity
- A Comparative Sorption Study of Ni (II) form Aqueous Solution Using Silica Gel, Amberlite IR-120 and Sawdust
- Photoluminescence, Third-Order Nonlinear Optical and DFT Studies of Hydrazonium L-Tartrate – Combined Experimental and Theoretical Studies
- Green Synthesis of Metal Nanoparticles and their Applications in Different Fields: A Review
- Fabrication and Evaluation of Cellulose-Alginate-Hydroxyapatite Beads for the Removal of Heavy Metal Ions from Aqueous Solutions
Artikel in diesem Heft
- Frontmatter
- Structural and Optical Properties of Multilayer Heterostructure of CdTe/CdSe Thin Films
- Thermal and Rheological Study of Nanocomposites, Reinforced with Bi-Phase Ceramic Nanoparticles
- Influence of Electron Injection Rate in Triphenylamine Based Dye for Dye-Sensitized Solar Cells: A First Principle Study
- Nickel Oxide-incorporated Polyaniline/Polyvinyl Alcohol Composite for Enhanced Antibacterial Activity
- A Comparative Sorption Study of Ni (II) form Aqueous Solution Using Silica Gel, Amberlite IR-120 and Sawdust
- Photoluminescence, Third-Order Nonlinear Optical and DFT Studies of Hydrazonium L-Tartrate – Combined Experimental and Theoretical Studies
- Green Synthesis of Metal Nanoparticles and their Applications in Different Fields: A Review
- Fabrication and Evaluation of Cellulose-Alginate-Hydroxyapatite Beads for the Removal of Heavy Metal Ions from Aqueous Solutions