Startseite Amine Capped Gold Colloids at Oxidic Supports: Their Electronic Interactions
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Amine Capped Gold Colloids at Oxidic Supports: Their Electronic Interactions

  • Michael Siemer , Lars Mohrhusen , Maximilian Grebien und Katharina Al-Shamery EMAIL logo
Veröffentlicht/Copyright: 13. April 2018

Abstract

Colloidal deposition of noble metal nanoparticles on oxidic supports is a recent approach for the fabrication of heterogeneous catalyst materials. We present studies on the interaction of different amine ligands with gold nanoparticles before and after deposition on several oxidic supports (titania, silica, alumina, magnesia or zinc oxide), using X-ray photoelectron and Auger spectroscopy, and high-resolution transmission electron microscopy. The adsorption of amines on thin gold films as well as on nanoparticles leads to a decrease in metal photoelectron binding energies. Usually, this is explained by donor-acceptor interactions via the amine group. By additional analysis of Auger signals, which are more sensitive to changes in the oxidation state than photoelectron spectra, we demonstrate that these shifts are due to a final state effect, namely, the increased photoelectron hole screening in presence of amine adsorbates. It will be shown, that this effect is not sensitive neither to the nanoparticle size nor the sterical properties of the capping amine. After deposition on oxide supports, the photoelectron binding energies are even further decreased. The presented findings exhibit that care has to be taken to interpret binding energy shifts simply with charging, which has impact on understanding the local electronic situation on the surface of metal-loaded oxides, crucial for heterogeneous catalysis.

Acknowledgment

Hereby, we want to thank Pascal Buhani for providing additional data on ODA capped gold nanoparticles and Erhard Rhiel, Ute Friedrich und Edith Kieselhorst for assistance in the electron microscopy facility and Carsten Dosche for technical support related to XPS.

The JEOL JEM2100F electron microscope and the Thermo Fisher ESCALAB 250Xi spectrometer were funded by the Deutsche Forschungsgesellschaft (INST 184/106-1 FUGG and INST 184/144-1 FUGG). This support is gratefully acknowledged.

References

1. M. Haruta, Nature 437 (2005) 1098.10.1038/4371098aSuche in Google Scholar

2. M.-C. Daniel, D. Astruc, Chem. Rev. 104 (2004) 293.10.1021/cr030698+Suche in Google Scholar

3. A. Arcadi, Chem. Rev. 108 (2008) 3266.10.1021/cr068435dSuche in Google Scholar

4. G. A. Somorjai, J. Y. Park, Chem. Soc. Rev. 37 (2008) 2155.10.1039/b719148kSuche in Google Scholar

5. A. T. Bell, Science 299 (2003) 1688.10.1126/science.1083671Suche in Google Scholar

6. J. Libuda, H.-J. Freund, Surf. Sci. Rep. 57 (2005) 157.10.1016/j.surfrep.2005.03.002Suche in Google Scholar

7. M. Haruta, Catal. Today 36 (1997) 153.10.1016/S0920-5861(96)00208-8Suche in Google Scholar

8. W.-L. Yim, T. Nowitzki, M. Necke, H. Schnars, P. Nickut, J. Biener, M. M. Biener, V. Zielasek, K. Al-Shamery, T. Klüner, M. Bäumer, J. Phys. Chem. C 111 (2007) 445.10.1021/jp0665729Suche in Google Scholar

9. A. Villa, D. Wang, D. Su, L. Prati, Catal. Sci. Technol. 5 (2015) 55.10.1039/C4CY00976BSuche in Google Scholar

10. X. Y. Liu, A. Wang, T. Zhang, C.-Y. Mou, Nano Today 8 (2013) 403.10.1016/j.nantod.2013.07.005Suche in Google Scholar

11. N. C. Bigall, W. J. Parak, D. Dorfs, Nano Today 7 (2012) 282.10.1016/j.nantod.2012.06.007Suche in Google Scholar

12. N. C. Bigall, A.-K. Herrmann, M. Vogel, M. Rose, P. Simon, W. Carrillo-Cabrera, D. Dorfs, S. Kaskel, N. Gaponik, A. Eychmüller, Angew. Chem. Int. Ed. 48 (2009) 9731.10.1002/anie.200902543Suche in Google Scholar PubMed

13. M. Comotti, W.-C. Li, B. Spliethoff, F. Schüth, J. Am. Chem. Soc. 128 (2006) 917.10.1021/ja0561441Suche in Google Scholar PubMed

14. M. Stratakis, H. Garcia, Chem. Rev. 112 (2012) 4469.10.1021/cr3000785Suche in Google Scholar PubMed

15. M. C. Kung, R. J. Davis, H. H. Kung, J. Phys. Chem. C 111 (2007) 11767.10.1021/jp072102iSuche in Google Scholar

16. M. Osmić, J. Kolny-Olesiak, K. Al-Shamery, CrystEngComm 16 (2014) 9907.10.1039/C4CE01342ESuche in Google Scholar

17. H. Borchert, D. Fenske, J. Kolny-Olesiak, J. Parisi, K. Al-Shamery, M. Bäumer, Angew. Chem. Int. Ed. 46 (2007) 2923.10.1002/anie.200604460Suche in Google Scholar PubMed

18. L. Mohrhusen, M. Osmić, RSC Adv. 7 (2017) 12897.10.1039/C6RA27454DSuche in Google Scholar

19. D. Fenske, P. Sonström, J. Stöver, X. Wang, H. Borchert, J. Parisi, J. Kolny-Olesiak, M. Bäumer, K. Al-Shamery, ChemCatChem 2 (2010) 198.10.1002/cctc.200900232Suche in Google Scholar

20. J. C. Matsubu, S. Zhang, L. DeRita, N. S. Marinkovic, J. G. Chen, G. W. Graham, X. Pan, P. Christopher, Nat. Chem. 9 (2017) 120.10.1038/nchem.2607Suche in Google Scholar PubMed

21. X. Wang, P. Sonström, D. Arndt, J. Stöver, V. Zielasek, H. Borchert, K. Thiel, K. Al-Shamery, M. Bäumer, J. Catal. 278 (2011) 143.10.1016/j.jcat.2010.11.020Suche in Google Scholar

22. L. Altmann, S. Kunz, M. Bäumer, J. Phys. Chem. C 118 (2014) 8925.10.1021/jp4116707Suche in Google Scholar

23. S. J. Tauster, Acc. Chem. Res. 20 (2002) 389.10.1021/ar00143a001Suche in Google Scholar

24. M. Ahmadi, H. Mistry, B. Roldan Cuenya, J. Phys. Chem. Lett. 7 (2016) 3519.10.1021/acs.jpclett.6b01198Suche in Google Scholar

25. N. R. Jana, X. Peng, J. Am. Chem. Soc. 125 (2003) 14280.10.1021/ja038219bSuche in Google Scholar

26. H. Bönnemann, W. Brijoux, W. R. Moser (Ed), Advanced Catalysts and Nanostructured Materials. Modern Synthetic Methods, Academic Press, San Diego (1996).Suche in Google Scholar

27. B.-H. Chen, J. M. White, J. Phys. Chem. 86 (1982) 3534.10.1021/j100215a010Suche in Google Scholar

28. C. Arribas, D. R. Rueda, J. L. G. Fierro, Langmuir 7 (1991) 2682.10.1021/la00059a047Suche in Google Scholar

29. J. F. Moulder, J. Chastain (Ed.), R. C. King (Ed.), Handbook of X-ray Photoelectron Spectroscopy. A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data, Perkin-Elmer, Eden Prairie, MN (1995).Suche in Google Scholar

30. B. V. Crist, J. Surf. Anal. 4 (1998) 428.Suche in Google Scholar

31. Z. Jiang, W. Zhang, L. Jin, X. Yang, F. Xu, J. Zhu, W. Huang, J. Phys. Chem. C 111 (2007) 12434.10.1021/jp073446bSuche in Google Scholar

32. C. R. Henry, Surf. Sci. Rep. 31 (1998) 231.10.1016/S0167-5729(98)00002-8Suche in Google Scholar

33. D. Dalacu, J. E. Klemberg-Sapieha, L. Martinu, Surf. Sci. 472 (2001) 33.10.1016/S0039-6028(00)00919-5Suche in Google Scholar

34. P. H. Citrin, G. K. Wertheim, Y. Baer, Phys. Rev. B 27 (1983) 3160.10.1103/PhysRevB.27.3160Suche in Google Scholar

35. D. V. Leff, L. Brandt, J. R. Heath, Langmuir 12 (1996) 4723.10.1021/la960445uSuche in Google Scholar

36. C. J. Johnson, E. Dujardin, S. A. Davis, C. J. Murphy, S. Mann, J. Mater. Chem. 12 (2002) 1765.10.1039/b200953fSuche in Google Scholar

37. S. I. Sanchez, M. W. Small, S. Sivaramakrishnan, J.-G. Wen, J.-M. Zuo, R. G. Nuzzo, Anal. Chem. 82 (2010) 2599.10.1021/ac902089fSuche in Google Scholar PubMed

38. A. Y. Klyushin, M. T. Greiner, X. Huang, T. Lunkenbein, X. Li, O. Timpe, M. Friedrich, M. Hävecker, A. Knop-Gericke, R. Schlögl, ACS Catal. 6 (2016) 3372.10.1021/acscatal.5b02631Suche in Google Scholar

39. J. Knecht, R. Fischer, H. Overhof, F. Hensel, J. Chem. Soc. Chem. Commun. 21 (1978) 905.10.1039/C39780000905Suche in Google Scholar

40. A. Zwijnenburg, A. Goossens, W. G. Sloof, M. W. J. Crajé, A. M. van der Kraan, L. Jos de Jongh, M. Makkee, J. A. Moulijn, J. Phys. Chem. B 106 (2002) 9853.10.1021/jp014723wSuche in Google Scholar

41. X. Liu, M.-H. Liu, Y.-C. Luo, C.-Y. Mou, S. D. Lin, H. Cheng, J.-M. Chen, J.-F. Lee, T.-S. Lin, J. Am. Chem. Soc. 134 (2012) 10251.10.1021/ja3033235Suche in Google Scholar PubMed

42. N. Weiher, E. Bus, L. Delannoy, C. Louis, D. E. Ramaker, J. T. Miller, J. A. van Bokhoven, J. Catal. 240 (2006) 100.10.1016/j.jcat.2006.03.010Suche in Google Scholar

43. J. Radnik, C. Mohr, P. Claus, Phys. Chem. Chem. Phys. 5 (2003) 172.10.1039/b207290dSuche in Google Scholar

44. D. Ding, K. Liu, S. He, C. Gao, Y. Yin, Nano Lett. 14 (2014) 6731.10.1021/nl503585mSuche in Google Scholar

45. P. Claus, A. Brückner, C. Mohr, H. Hofmeister, J. Am. Chem. Soc. 122 (2000) 11430.10.1021/ja0012974Suche in Google Scholar

46. W. Shockley, Phys. Rev. 56 (1939) 317.10.1103/PhysRev.56.317Suche in Google Scholar

47. I. Barke, H. Hövel, Phys. Rev. Lett. 90 (2003) 166801.10.1103/PhysRevLett.90.166801Suche in Google Scholar

48. B. Yan, B. Stadtmüller, N. Haag, S. Jakobs, J. Seidel, D. Jungkenn, S. Mathias, M. Cinchetti, M. Aeschlimann, C. Felser, Nat. Commun. 6 (2015) 10167.10.1038/ncomms10167Suche in Google Scholar

49. J. Paul, S. Å. Lindgren, L. Walldén, Solid State Commun. 40 (1981) 395.10.1016/0038-1098(81)90846-2Suche in Google Scholar

50. X. Lin, B. Yang, H.-M. Benia, P. Myrach, M. Yulikov, A. Aumer, M. A. Brown, M. Sterrer, O. Bondarchuk, E. Kieseritzky, J. Rocker, T. Risse, H.-J. Gao, N. Nilius, H.-J. Freund, J. Am. Chem. Soc. 132 (2010) 7745.10.1021/ja101188xSuche in Google Scholar PubMed


Supplementary Material

The online version of this article offers supplementary material (https://doi.org/10.1515/zpch-2018-0004).


Received: 2017-12-22
Accepted: 2018-03-01
Published Online: 2018-04-13
Published in Print: 2018-12-19

©2019 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 23.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2018-0004/html?lang=de
Button zum nach oben scrollen