Startseite Naturwissenschaften Electrochemical Lignin Degradation in Ionic Liquids on Ternary Mixed Metal Electrodes
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Electrochemical Lignin Degradation in Ionic Liquids on Ternary Mixed Metal Electrodes

  • Daniel Rauber , Tobias K.F. Dier , Dietrich A. Volmer und Rolf Hempelmann EMAIL logo
Veröffentlicht/Copyright: 6. Oktober 2017

Abstract

Lignin is the second most abundant natural polymer and a promissing feedstock for the generation of renewable aromatic chemicals. We present an fundamental approach for the electrocatalytic cleavage of lignin dissolved in a recoverable, inexpensive ionic liquid using mixed metal oxide electrodes of different compositions. The distribution of depolymerization products generated by electrochemical oxidation were analyzed by means of mass spectrometry. The distribution and yield of the cracked species was found to depended strongly on the implemented metal catalyst and therefore offers the potential to tailor the amount and composition of the low molecular weight cleavage products. This approach could help to provide a more sustainable valorization of lignin for the potential production of high value aromatic compounds due to synergistic effects.

Acknowledgements

This work was supported by the German Research Foundation (DFG) under grant number HE 2403/19-1/VO 1355/4-1. DAV acknowledges general research support by the Alfried Krupp von Bohlen und Halbach-Stiftung. We thank Reiner Wintringer and Verlaine Fossog for technical support.

References

1. B. M. Upton, A. M. Kasko, Chem. Rev. 116 (2016) 2275.10.1021/acs.chemrev.5b00345Suche in Google Scholar PubMed

2. S. Laurichesse, L. Avérous, Prog. Polym. Sci. 39 (2014) 1266.10.1016/j.progpolymsci.2013.11.004Suche in Google Scholar

3. A. J. Ragauskas, G. T. Beckham, M. J. Biddy, R. Chandra, F. Chen, M. F. Davis, B. H. Davison, R. A. Dixon, P. Gilna, M. Keller, P. Langan, A. K. Naskar, J. N. Saddler, T. J. Tschaplinski, G. A. Tuskan, C. E. Wyman, Science 344 (2014) 1246843.10.1126/science.1246843Suche in Google Scholar PubMed

4. C. Li, X. Zhao, A. Wang, G. W. Huber, T. Zhang, Chem. Rev. 115 (2015) 11559.10.1021/acs.chemrev.5b00155Suche in Google Scholar PubMed

5. V. L. Pardini, C. Z. Smith, J. H. P. Utley, R. R. Vargas, H. Viertler, J. Org. Chem. 56 (1991) 7305.10.1021/jo00026a022Suche in Google Scholar

6. K. Stärk, N. Taccardi, A. Bösmann, P. Wasserscheid, ChemSusChem. 3 (2010) 719.10.1002/cssc.200900242Suche in Google Scholar PubMed

7. J. Zakzeski, P. C. A. Bruijnincx, A. L. Jongerius, B. M. Weckhuysen, Chem. Rev. 110 (2010) 3552.10.1021/cr900354uSuche in Google Scholar PubMed

8. S.-H. Li, S. Liu, J. C. Colmenares, Y.-J. Xu, Green Chem. 18 (2016) 594.10.1039/C5GC02109JSuche in Google Scholar

9. S. Jia, B. J. Cox, X. Guo, Z. C. Zhang, J. G. Ekerdt, ChemSusChem. 3 (2010) 1078.10.1002/cssc.201000112Suche in Google Scholar PubMed

10. D. Glas, C. Van Doorslaer, D. Depuydt, F. Liebner, T. Rosenau, K. Binnemans, D. E. De Vos, J. Chem. Technol. Biotechnol. 90 (2015) 1821.10.1002/jctb.4492Suche in Google Scholar

11. W. E. S. Hart, J. B. Harper, L. Aldous, Green Chem. 17 (2015) 214.10.1039/C4GC01888ESuche in Google Scholar

12. N. Sun, M. Rahman, Y. Qin, M. L. Maxim, H. Rodríguez, R. D. Rogers, Green Chem. 11 (2009) 646.10.1039/b822702kSuche in Google Scholar

13. A. Brandt, J. Gräsvik, J. P. Hallett, T. Welton, Green Chem. 15 (2013) 550.10.1039/c2gc36364jSuche in Google Scholar

14. E. Reichert, R. Wintringer, D. A. Volmer, R. Hempelmann, Phys. Chem. Chem. Phys. 14 (2012) 5214.10.1039/c2cp23596jSuche in Google Scholar PubMed

15. T. K. F. Dier, D. Rauber, D. Durneata, R. Hempelmann, D. A. Volmer, Sci. Rep. 7 (2017) 5041.10.1038/s41598-017-05316-xSuche in Google Scholar PubMed PubMed Central

16. S. Stiefel, A. Schmitz, J. Peters, D. Di Marino, M. Wessling, Green Chem. 18 (2016) 4999.10.1039/C6GC00878JSuche in Google Scholar

17. O. Movil-Cabrera, A. Rodriguez-Silva, C. Arroyo-Torres, J. A. Staser, Biomass Bioenergy 88 (2016) 89.10.1016/j.biombioe.2016.03.014Suche in Google Scholar

18. S. K. Hanson, R. T. Baker, Acc. Chem. Res. 48 (2015) 2037.10.1021/acs.accounts.5b00104Suche in Google Scholar PubMed

19. S. Trasatti, Electrochim. Acta. 45 (2000) 2377.10.1016/S0013-4686(00)00338-8Suche in Google Scholar

20. H. Zhu, L. Wang, Y. Chen, G. Li, H. Li, Y. Tang, P. Wan, RSC Adv. 4 (2014) 29917.10.1039/C4RA03793FSuche in Google Scholar

21. E. C. Achinivu, R. M. Howard, G. Li, H. Gracz, W. A. Henderson, Green Chem. 16 (2014) 1114.10.1039/C3GC42306ASuche in Google Scholar

22. X. Lu, G. Burrell, F. Separovic, C. Zhao, J. Phys. Chem. B. 116 (2012) 9160.10.1021/jp304735pSuche in Google Scholar PubMed

23. T. L. Greaves, C. J. Drummond, Chem. Rev. 115 (2015) 11379.10.1021/acs.chemrev.5b00158Suche in Google Scholar PubMed

24. M. M. Hossain, L. Aldous, Aust. J. Chem. 65 (2012) 1465.10.1071/CH12324Suche in Google Scholar

25. D. J. G. P. van Osch, L. J. B. M. Kollau, A. van den Bruinhorst, S. Asikainen, M. A. A. Rocha, M. C. Kroon, Phys. Chem. Chem. Phys. 19 (2017) 2636.10.1039/C6CP07499ESuche in Google Scholar PubMed

26. M. V. Galkin, J. S. M. Samec, ChemSusChem. 9 (2016) 1544.10.1002/cssc.201600237Suche in Google Scholar PubMed

27. R. Rinaldi, R. Jastrzebski, M. T. Clough, J. Ralph, M. Kennema, P. C. A. Bruijnincx, B. M. Weckhuysen, Angew. Chemie Int. Ed. 55 (2016) 8164.10.1002/anie.201510351Suche in Google Scholar PubMed PubMed Central

28. G. Chatel, R. D. Rogers, ACS Sustain. Chem. Eng. 2 (2014) 322.10.1021/sc4004086Suche in Google Scholar

29. T. K. F. Dier, D. Rauber, J. Jauch, R. Hempelmann, D. A. Volmer, ChemistrySelect. 2 (2017) 779.10.1002/slct.201601673Suche in Google Scholar

30. D. Schmitt, C. Regenbrecht, M. Hartmer, F. Stecker, S. R. Waldvogel, Beilstein J. Org. Chem. 11 (2015) 473.10.3762/bjoc.11.53Suche in Google Scholar PubMed PubMed Central

31. D. Schmitt, C. Regenbrecht, M. Schubert, D. Schollmeyer, S. R. Waldvogel, Holzforschung 71 (2017) 35.10.1515/hf-2015-0210Suche in Google Scholar

32. D. Schmitt, N. Beiser, C. Regenbrecht, M. Zirbes, S. R. Waldvogel, Sep. Purif. Technol. 181 (2017) 8.10.1016/j.seppur.2017.03.004Suche in Google Scholar

33. R. Behling, S. Valange, G. Chatel, Green Chem. 18 (2016) 1839.10.1039/C5GC03061GSuche in Google Scholar

34. G. F. De Gregorio, C. C. Weber, J. Gräsvik, T. Welton, A. Brandt, J. P. Hallett, Green Chem. 18 (2016) 5456.10.1039/C6GC01295GSuche in Google Scholar

35. T. K. F. Dier, K. Egele, V. Fossog, R. Hempelmann, D. A. Volmer, Anal. Chem. 88 (2016) 1328.10.1021/acs.analchem.5b03790Suche in Google Scholar PubMed

36. Y. Qi, R. Hempelmann, D. A. Volmer, Anal. Bioanal. Chem. 408 (2016) 4835.10.1007/s00216-016-9598-5Suche in Google Scholar PubMed PubMed Central

37. Y. Qi, R. Hempelmann, D. A. Volmer, Anal. Bioanal. Chem. 408 (2016) 8203.10.1007/s00216-016-9928-7Suche in Google Scholar PubMed

38. R. Chen, V. Trieu, H. Natter, K. Stöwe, W. F. Maier, R. Hempelmann, A. Bulan, J. Kintrup, R. Weber, Chem. Mater. 22 (2010) 6215.10.1021/cm102414nSuche in Google Scholar

Received: 2017-2-28
Accepted: 2017-8-21
Published Online: 2017-10-6
Published in Print: 2018-2-23

©2018 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 25.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zpch-2017-0951/html?lang=de
Button zum nach oben scrollen