Comparison of the Microstructure of Stimuli Responsive Zwitterionic PNIPAM-co-Sulfobetaine Microgels with PNIPAM Microgels and Classical Hard-Sphere Systems
-
Andreas Josef Schmid
, Jonas Riest
, Thomas Eckert , Peter Lindner , Gerhard Naegele und Walter Richtering
Abstract
In this study, we compare the experimental static structure factors of concentrated solutions of amphoteric poly(N-isopropylacrylamide) (PNIPAM) microgels with those of the polydisperse hard-sphere model. We use zwitterionic microgels as model systems for amphoteric microgels with an equal amount of positive and negative charges located in a defined distance. Using small angle neutron scattering (SANS), we measure the static structure factors, SM(q), of a series of zwitterionic microgels with increasing amount of zwitterion, including a reference sample of pure PNIPAM. The experimental SM(q) is compared with predictions based on the Percus-Yevick approximation for hard spheres. We also compare with the PNIPAM reference sample measured for zwitterionic microgels. We find no significant influence of the zwitterionic comonomer on the effective pair potential. The PNIPAM and the zwitterionic microgels can be described by the hard-sphere model for smaller volume fractions ϕT ≲ 0.4 only.
©2014 Walter de Gruyter Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Editorial
- Special Issue Commemorating the Paper “The Diffraction of X-rays by Crystals” by William Lawrence Bragg (ZPC, 104, 337–348 (1923); Nobel Lecture, September 6, 1922)
- Historical Paper
- The Diffraction of X-rays by Crystals
- Packing Effects of N-Ras Binding to a DOPC Membrane – a Neutron Reflectivity and TIRF Spectroscopy High-Pressure Study
- High Pressure X-ray Studies of Lipid Membranes and Lipid Phase Transitions
- Microscopic Structure Analysis in Disordered Materials using Anomalous X-ray Scattering
- Comparison of the Microstructure of Stimuli Responsive Zwitterionic PNIPAM-co-Sulfobetaine Microgels with PNIPAM Microgels and Classical Hard-Sphere Systems
- The Internal Network Dynamics of Poly(NIPAM) Based Copolymer Micro- and Macrogels: A Comparative Neutron Spin-Echo Study
- Configuration Determination of Transition Metal Complexes by Multiple Scattering EXAFS Analysis: A Case Study
- Review Article
- Ptychographic X-ray Microscopy with the Vacuum Imaging Apparatus HORST
- The Interaction of Bio-Molecules with Lipid Membranes Studied by X-ray Diffraction
- Deep Sea Microbes Probed by Incoherent Neutron Scattering Under High Hydrostatic Pressure
- X-ray Reflectometry and Related Surface Near X-ray Scattering Methods
Artikel in diesem Heft
- Frontmatter
- Editorial
- Special Issue Commemorating the Paper “The Diffraction of X-rays by Crystals” by William Lawrence Bragg (ZPC, 104, 337–348 (1923); Nobel Lecture, September 6, 1922)
- Historical Paper
- The Diffraction of X-rays by Crystals
- Packing Effects of N-Ras Binding to a DOPC Membrane – a Neutron Reflectivity and TIRF Spectroscopy High-Pressure Study
- High Pressure X-ray Studies of Lipid Membranes and Lipid Phase Transitions
- Microscopic Structure Analysis in Disordered Materials using Anomalous X-ray Scattering
- Comparison of the Microstructure of Stimuli Responsive Zwitterionic PNIPAM-co-Sulfobetaine Microgels with PNIPAM Microgels and Classical Hard-Sphere Systems
- The Internal Network Dynamics of Poly(NIPAM) Based Copolymer Micro- and Macrogels: A Comparative Neutron Spin-Echo Study
- Configuration Determination of Transition Metal Complexes by Multiple Scattering EXAFS Analysis: A Case Study
- Review Article
- Ptychographic X-ray Microscopy with the Vacuum Imaging Apparatus HORST
- The Interaction of Bio-Molecules with Lipid Membranes Studied by X-ray Diffraction
- Deep Sea Microbes Probed by Incoherent Neutron Scattering Under High Hydrostatic Pressure
- X-ray Reflectometry and Related Surface Near X-ray Scattering Methods