Abstract
For the past 100 years, X-ray diffraction has been a powerful and indispensable tool to study the structure of matter. The challenge when studying molecular ordering in biological materials is their inherent disorder and strong fluctuations, which often suppress the formation of Bragg peaks. In the case of membranes, X-rays can detect molecules inside and confined between membranes. In this article we review examples to highlight the capabilities and accomplishments of X-ray scattering for the determination of membrane structure. X-ray diffraction gives quantitative information about partitioning of a small molecule, ethanol, in lipid bilayers. By taking amyloid-β peptides as examples, it is demonstrated that the position of peptides in lipid membranes can be determined with high precision. Confinement between membranes can organize molecules, as is the case for a mono-nucleotide, adenosine monophosphate, and the resulting pattern might be important to understand the formation of short RNA strands. With new approaches and techniques, and the increasingly powerful and capable devices, X-ray diffraction will continue to be the work horse for the determination of molecular structure in biological materials.
©2014 Walter de Gruyter Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Editorial
- Special Issue Commemorating the Paper “The Diffraction of X-rays by Crystals” by William Lawrence Bragg (ZPC, 104, 337–348 (1923); Nobel Lecture, September 6, 1922)
- Historical Paper
- The Diffraction of X-rays by Crystals
- Packing Effects of N-Ras Binding to a DOPC Membrane – a Neutron Reflectivity and TIRF Spectroscopy High-Pressure Study
- High Pressure X-ray Studies of Lipid Membranes and Lipid Phase Transitions
- Microscopic Structure Analysis in Disordered Materials using Anomalous X-ray Scattering
- Comparison of the Microstructure of Stimuli Responsive Zwitterionic PNIPAM-co-Sulfobetaine Microgels with PNIPAM Microgels and Classical Hard-Sphere Systems
- The Internal Network Dynamics of Poly(NIPAM) Based Copolymer Micro- and Macrogels: A Comparative Neutron Spin-Echo Study
- Configuration Determination of Transition Metal Complexes by Multiple Scattering EXAFS Analysis: A Case Study
- Review Article
- Ptychographic X-ray Microscopy with the Vacuum Imaging Apparatus HORST
- The Interaction of Bio-Molecules with Lipid Membranes Studied by X-ray Diffraction
- Deep Sea Microbes Probed by Incoherent Neutron Scattering Under High Hydrostatic Pressure
- X-ray Reflectometry and Related Surface Near X-ray Scattering Methods
Artikel in diesem Heft
- Frontmatter
- Editorial
- Special Issue Commemorating the Paper “The Diffraction of X-rays by Crystals” by William Lawrence Bragg (ZPC, 104, 337–348 (1923); Nobel Lecture, September 6, 1922)
- Historical Paper
- The Diffraction of X-rays by Crystals
- Packing Effects of N-Ras Binding to a DOPC Membrane – a Neutron Reflectivity and TIRF Spectroscopy High-Pressure Study
- High Pressure X-ray Studies of Lipid Membranes and Lipid Phase Transitions
- Microscopic Structure Analysis in Disordered Materials using Anomalous X-ray Scattering
- Comparison of the Microstructure of Stimuli Responsive Zwitterionic PNIPAM-co-Sulfobetaine Microgels with PNIPAM Microgels and Classical Hard-Sphere Systems
- The Internal Network Dynamics of Poly(NIPAM) Based Copolymer Micro- and Macrogels: A Comparative Neutron Spin-Echo Study
- Configuration Determination of Transition Metal Complexes by Multiple Scattering EXAFS Analysis: A Case Study
- Review Article
- Ptychographic X-ray Microscopy with the Vacuum Imaging Apparatus HORST
- The Interaction of Bio-Molecules with Lipid Membranes Studied by X-ray Diffraction
- Deep Sea Microbes Probed by Incoherent Neutron Scattering Under High Hydrostatic Pressure
- X-ray Reflectometry and Related Surface Near X-ray Scattering Methods