Home Utilizing olive leaves as a rich source of multifunctional bioactive compounds to fight oxidative stress, Alzheimer’s disease, diabetes, and cancer using in vitro, in silico, and bioinformatics techniques
Article
Licensed
Unlicensed Requires Authentication

Utilizing olive leaves as a rich source of multifunctional bioactive compounds to fight oxidative stress, Alzheimer’s disease, diabetes, and cancer using in vitro, in silico, and bioinformatics techniques

  • Gunes Ak , Nilofar Nilofar , Nadire Pelin Bahadirli , Agnese Santanatoglia , Giovanni Caprioli , Gianni Sagratini , Ismail Koyuncu , Idris Kirhan , Jasmina Glamočlija , Dejan Stojković , Abdullahi Ibrahim Uba , Savaş Kaya , Mikhail M. Maslov , Sakina Yagi EMAIL logo and Gokhan Zengin ORCID logo EMAIL logo
Published/Copyright: September 9, 2025
Become an author with De Gruyter Brill

Abstract

Olive leaves are of significant interest in traditional medicine and in the development of functional nutraceuticals. In this study, the leaves of four olive varieties (Halhali, arbequina, gemlik, karamani) were utilized to examine and compare the chemical composition and biological activities, particularly their role in enzyme inhibition, cancer prevention, and apoptosis induction. Results showed that among the tested varieties analyzed, Gemlik (77.79 mg gallic acid equivalent (GAE)/g) and halhali (76.03 mg GAE/g) exhibited the phenolic contents while arbequina had the highest flavonoid content (36.51 mg rutin equivalent (RE)/g). Similarly, these two varieties of extracts recorded strong antioxidant activity in several assays. Gemlik (2.70 mg galantamine equivalent (GALAE)/g) and arbequina (2.59 mg GALAE/g) demonstrated the highest acetylcholinesterase (AChE) inhibition. The results of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)) assay showed arbequina provided the highest cytotoxic effect against HeLa cells (IC50 value: 60.59 μg/ml) and annexin-V/PI staining confirmed the inducing of apoptosis by arbequina in HeLa cells. In conclusion, the studied olive varieties of leaf extracts appeared to have more potential as a health supplement rich in natural antioxidants and merit further intensive study.


Corresponding authors: Sakina Yagi, Department of Botany, Faculty of Science, University of Khartoum, Khartoum, Sudan, E-mail: ; and Gokhan Zengin, Department of Biology, Science Faculty, Selcuk University, Campus, Konya, Türkiye, E-mail:
Correction added September 20, 2025 after online publication September 9, 2025: in the original version of this paper the author Nadire Pelin Bahadirli was mistakenly mentioned as Pelin Bahadirli.

Acknowledgments

This research was supported by the Ministry of Science, Technological Development, and Innovation of the Republic of Serbia (Grant No. 451-03-136/2025-03/200007) and aligns with the United Nations Sustainable Development Goal (UNSDG) 3: Good Health and Well-Being.

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: Conceptualization, GA, N, PB, GZ; methodology, GA, N, AS, GC, IK, AIU, MMM, SK, GZ.; software, SK, MMM; validation, PB, GS, IK, IK, AIU; formal analysis, GZ; investigation, GA, N, PB, GZ, JG; resources, PB; data curation, AIU, SK, MMM writing – original draft preparation, GA, N, AS, GC, GZ, JG, DS; writing – review and editing, AIU, SK, MM, GZ.; visualization, AIU.; supervision, GZ.; project administration, GZ.; funding acquisition, GZ. All authors have read and agreed to the published version of the manuscript.”

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The authors declare no competing interests.

  6. Research funding: This research received no external funding.

  7. Data availability: Data will be made available on request.

References

1. Ghanbari, R, Anwar, F, Alkharfy, KM, Gilani, A-H, Saari, N. Int J Mol Sci 2012;13:3291–340. https://doi.org/10.3390/ijms13033291.Search in Google Scholar PubMed PubMed Central

2. Boss, A, Bishop, KS, Marlow, G, Barnett, MP, Ferguson, LR. Nutrients 2016;8:513. https://doi.org/10.3390/nu8080513.Search in Google Scholar PubMed PubMed Central

3. Erbay, Z, Icier, F. Crit Rev Food Sci Nutr 2010;50:441–64. https://doi.org/10.1080/10408390802437063.Search in Google Scholar PubMed

4. Japón-Luján, R, Luque-Rodríguez, J, De Castro, ML. J Chromatogr A 2006;1108:76–82.10.1016/j.chroma.2005.12.106Search in Google Scholar PubMed

5. Ozkaya, M, Cakir, E, Gokbayrak, Z, Ercan, H, Taskin, N. Sci Hortic 2006;108:205–9. https://doi.org/10.1016/j.scienta.2006.01.016.Search in Google Scholar

6. Shendi, EG, Özay, DS, Özkaya, MT, Üstünel, NF. Croat J Food Sci Technol 2019;11:52–8. https://doi.org/10.3920/qas2018.1272.Search in Google Scholar

7. Demir, C, Yildiz, E, Gurbuz, O. Processes 2023;11:2412. https://doi.org/10.3390/pr11082412.Search in Google Scholar

8. Soni, M, Burdock, G, Christian, M, Bitler, C, Crea, R. Food Chem Toxicol 2006;44:903–15. https://doi.org/10.1016/j.fct.2006.01.008.Search in Google Scholar PubMed

9. Özcan, MM, Matthäus, B. Eur Food Res Technol 2017;243:89–99.10.1007/s00217-016-2726-9Search in Google Scholar

10. Hashmi, MA, Khan, A, Hanif, M, Farooq, U, Perveen, S. Evid-Based Complementary Alternative Med 2015;2015:541591. https://doi.org/10.1155/2015/541591.Search in Google Scholar PubMed PubMed Central

11. Oliveira, AL, Gondim, S, Gómez-García, R, Ribeiro, T, Pintado, M. J Environ Chem Eng 2021;9:106175. https://doi.org/10.1016/j.jece.2021.106175.Search in Google Scholar

12. Moudache, M, Colon, M, Nerín, C, Zaidi, F. Food Chem 2016;212:521–7. https://doi.org/10.1016/j.foodchem.2016.06.001.Search in Google Scholar PubMed

13. El, SN, Karakaya, S. Nutr Rev 2009;67:632–8. https://doi.org/10.1111/j.1753-4887.2009.00248.x.Search in Google Scholar PubMed

14. Qabaha, K, Al-Rimawi, F, Qasem, A, Naser, SA. J Med Food 2018;21:302–5. https://doi.org/10.1089/jmf.2017.0070.Search in Google Scholar PubMed

15. Wang, L, Geng, C, Jiang, L, Gong, D, Liu, D, Yoshimura, H, et al.. Eur J Nutr 2008;47:235–43. https://doi.org/10.1007/s00394-008-0717-8.Search in Google Scholar PubMed

16. Acar-Tek, N, Ağagündüz, D. Ann Nutr Metabol 2020;76:10–15. https://doi.org/10.1159/000505508.Search in Google Scholar PubMed

17. Zheng, J, Wei, J-T, Liu, J-F, Liu, Y-W. China J Chin Mater Med 2016;41:613–18.Search in Google Scholar

18. Rufino-Palomares, EE, Pérez-Jiménez, A, García-Salguero, L, Mokhtari, K, Reyes-Zurita, FJ, Peragón-Sánchez, J, et al.. Molecules 2022;27:2341. https://doi.org/10.3390/molecules27072341.Search in Google Scholar PubMed PubMed Central

19. Talhaoui, N, Taamalli, A, Gómez-Caravaca, AM, Fernández-Gutiérrez, A, Segura-Carretero, A. Food Res Int 2015;77:92–108. https://doi.org/10.1016/j.foodres.2015.09.011.Search in Google Scholar

20. Lukić, I, Pasković, I, Žurga, P, Majetić Germek, V, Brkljača, M, Marcelić, Š, et al.. Plants 2020;9:1667.10.3390/plants9121667Search in Google Scholar PubMed PubMed Central

21. Wang, B, Qu, J, Feng, S, Chen, T, Yuan, M, Huang, Y, et al.. Foods 2019;8:657. https://doi.org/10.3390/foods8120657.Search in Google Scholar PubMed PubMed Central

22. Lorini, A, Aranha, BC, da Fonseca Antunes, B, Otero, DM, Jacques, AC, Zambiazi, RC. Food Chem 2021;345:128758. https://doi.org/10.1016/j.foodchem.2020.128758.Search in Google Scholar PubMed

23. Guinda, Á, Pérez‐Camino, MC, Lanzón, A. Eur J Lipid Sci Technol 2004;106:22–6. https://doi.org/10.1002/ejlt.200300769.Search in Google Scholar

24. Nicolì, F, Negro, C, Vergine, M, Aprile, A, Nutricati, E, Sabella, E, et al.. Molecules 2019;24:1998.10.3390/molecules24101998Search in Google Scholar PubMed PubMed Central

25. Romero, C, García, A, Medina, E, Ruíz-Méndez, MV, de Castro, A, Brenes, M. Food Chem 2010;118:670–4. https://doi.org/10.1016/j.foodchem.2009.05.037.Search in Google Scholar

26. Kamran, M, Hamlin, AS, Scott, CJ, Obied, HK. Ind Crops Prod 2015;78:29–38. https://doi.org/10.1016/j.indcrop.2015.10.031.Search in Google Scholar

27. Ahmad-Qasem, MH, Canovas, J, Barrajon-Catalan, E, Carreres, JE, Micol, V, Garcia-Perez, JV. J Agric Food Chem 2014;62:6190–8. https://doi.org/10.1021/jf501414h.Search in Google Scholar PubMed

28. Spinelli, R, Picchi, G. Bioresour Technol 2010;101:730–5. https://doi.org/10.1016/j.biortech.2009.08.039.Search in Google Scholar PubMed

29. Zengin, G, Nithiyanantham, S, Locatelli, M, Ceylan, R, Uysal, S, Aktumsek, A, et al.. Eur J Integr Med 2016;8:286–92. https://doi.org/10.1016/j.eujim.2015.12.004.Search in Google Scholar

30. Santanatoglia, A, Caprioli, G, Cespi, M, Ciarlantini, D, Cognigni, L, Fioretti, L, et al.. LWT 2023;175:114471. https://doi.org/10.1016/j.lwt.2023.114471.Search in Google Scholar

31. Santanatoglia, A, Cespi, M, Perinelli, DR, Fioretti, L, Sagratini, G, Vittori, S, et al.. J Food Compos Anal 2023;124:105698. https://doi.org/10.1016/j.jfca.2023.105698.Search in Google Scholar

32. Mustafa, AM, Angeloni, S, Abouelenein, D, Acquaticci, L, Xiao, J, Sagratini, G, et al.. Food Chem 2022;367:130743. https://doi.org/10.1016/j.foodchem.2021.130743.Search in Google Scholar PubMed

33. Ricciutelli, M, Marconi, S, Boarelli, MC, Caprioli, G, Sagratini, G, Ballini, R, et al.. J Chromatogr, A 2017;1481:53–63. https://doi.org/10.1016/j.chroma.2016.12.020.Search in Google Scholar PubMed

34. Grochowski, DM, Uysal, S, Aktumsek, A, Granica, S, Zengin, G, Ceylan, R, et al.. Phytochem Lett 2017;20:365–72. https://doi.org/10.1016/j.phytol.2017.03.005.Search in Google Scholar

35. Soković, M, Glamočlija, J, Marin, PD, Brkić, D, van Griensven, LJLD. Molecules 2010;15:7532–46.10.3390/molecules15117532Search in Google Scholar PubMed PubMed Central

36. Soković, M, van Griensven, LJLD. Eur J Plant Pathol 2006;116:211–24.10.1007/s10658-006-9053-0Search in Google Scholar

37. Dileep, KV, Ihara, K, Mishima-Tsumagari, C, Kukimoto-Niino, M, Yonemochi, M, Hanada, K, et al.. Int J Biol Macromol 2022;210:172–81. https://doi.org/10.1016/j.ijbiomac.2022.05.009.Search in Google Scholar PubMed

38. Knez, D, Diez-Iriepa, D, Chioua, M, Gottinger, A, Denic, M, Chantegreil, F, et al.. Acta Pharm Sin B 2023;13:2152–75. https://doi.org/10.1016/j.apsb.2023.01.013.Search in Google Scholar PubMed PubMed Central

39. Nahoum, V, Roux, G, Anton, V, Rouge, P, Puigserver, A, Bischoff, H, et al.. Biochem J 2000;346:201–8. https://doi.org/10.1042/bj3460201.Search in Google Scholar

40. Souers, AJ, Leverson, JD, Boghaert, ER, Ackler, SL, Catron, ND, Chen, J, et al.. Nat Med 2013;19:202–8. https://doi.org/10.1038/nm.3048.Search in Google Scholar PubMed

41. Wood, DJ, Korolchuk, S, Tatum, NJ, Wang, L-Z, Endicott, JA, Noble, MEM, et al.. Cell Chem Biol 2019;26:121–30.e125. https://doi.org/10.1016/j.chembiol.2018.10.015.Search in Google Scholar PubMed PubMed Central

42. Kurumbail, RG, Stevens, AM, Gierse, JK, McDonald, JJ, Stegeman, RA, Pak, JY, et al.. Nature 1996;384:644–8. https://doi.org/10.1038/384644a0.Search in Google Scholar PubMed

43. Chiavaroli, A, Libero, ML, Di Simone, SC, Acquaviva, A, Nilofar, Recinella, L, Leone, S, et al.. Plants 2023;12:1132. https://doi.org/10.3390/plants12051132.Search in Google Scholar PubMed PubMed Central

44. Martínez-Rosell, G, Giorgino, T, De Fabritiis, G. J Chem Inf Model 2017;57:1511–16.10.1021/acs.jcim.7b00190Search in Google Scholar PubMed

45. Pettersen, EF, Goddard, TD, Huang, CC, Couch, GS, Greenblatt, DM, Meng, EC, et al.. J Comput Chem 2004;25:1605–12. https://doi.org/10.1002/jcc.20084.Search in Google Scholar PubMed

46. Morris, GM, Huey, R, Lindstrom, W, Sanner, MF, Belew, RK, Goodsell, DS, et al.. J Comput Chem 2009;30:2785–91. https://doi.org/10.1002/jcc.21256.Search in Google Scholar PubMed PubMed Central

47. Perdew, JP, Burke, K, Ernzerhof, M. Phys Rev Lett 1996;77:3865. https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar

48. Francl, MM, Pietro, WJ, Hehre, WJ, Binkley, JS, Gordon, MS, DeFrees, DJ, et al.. J Chem Phys 1982;77:3654–65. https://doi.org/10.1063/1.444267.Search in Google Scholar

49. Çelik, MS, Çaylak, O, Kütük, N, Yenidünya, AF, Çetinkaya, S, Maslov, MM, et al.. Biomass Convers Biorefin 2024;15:1041–56.10.1007/s13399-024-05287-wSearch in Google Scholar

50. Titov, AV, Ufimtsev, IS, Luehr, N, Martinez, TJ. J Chem Theor Comput 2013;9:213–21. https://doi.org/10.1021/ct300321a.Search in Google Scholar PubMed

51. Kästner, J, Carr, JM, Keal, TW, Thiel, W, Wander, A, Sherwood, P. J Phys Chem A 2009;113:11856–65.10.1021/jp9028968Search in Google Scholar PubMed

52. Goumans, T, Catlow, CRA, Brown, WA, Kästner, J, Sherwood, P. Phys Chem Chem Phys 2009;11:5431–6. https://doi.org/10.1039/b816905e.Search in Google Scholar PubMed

53. Wang, L-P, Song, C. J Chem Phys 2016;144:214108. https://doi.org/10.1063/1.4952956.Search in Google Scholar PubMed

54. Grimme, S, Antony, J, Ehrlich, S, Krieg, H. J Chem Phys 2010;132:154104. https://doi.org/10.1063/1.3382344.Search in Google Scholar PubMed

55. Islam, N, Kaya, S. Conceptual density functional theory and its application in the chemical domain. CRC Press; 2018.10.1201/b22471Search in Google Scholar

56. Kaya, Y, Kaya, S, Berisha, A, Erçağ, A. J Mol Struct 2023;1291:135973. https://doi.org/10.1016/j.molstruc.2023.135973.Search in Google Scholar

57. Parr, RG, Szentpály, Lv, Liu, S. J Am Chem Soc 1999;121:1922–4. https://doi.org/10.1021/ja983494x.Search in Google Scholar

58. von Szentpály, L, Kaya, S, Karakuş, N. J Phys Chem 2020;124:10897–908.10.1021/acs.jpca.0c08196Search in Google Scholar PubMed

59. Koopmans, T. Physica 1934;1:104–13.10.1016/S0031-8914(34)90011-2Search in Google Scholar

60. Kaya, S, Kaya, C. Mol Phys 2015;113:1311–19. https://doi.org/10.1080/00268976.2014.991771.Search in Google Scholar

61. Kaya, S, Robles-Navarro, A, Mejía, E, Gómez, T, Cardenas, C. J Phys Chem 2022;126:4507–16. https://doi.org/10.1021/acs.jpca.1c09898.Search in Google Scholar PubMed PubMed Central

62. Lockyer, S, Yaqoob, P, Spencer, JP, Rowland, I. Nutr Aging 2012;1:125–40. https://doi.org/10.3233/nua-2012-0011.Search in Google Scholar

63. Pandey, KB, Rizvi, SI. Oxid Med Cell Longev 2009;2:270–8. https://doi.org/10.4161/oxim.2.5.9498.Search in Google Scholar PubMed PubMed Central

64. Pietta, P, Minoggio, M, Bramati, L. Stud Nat Prod Chem 2003;28:257–312.10.1016/S1572-5995(03)80143-6Search in Google Scholar

65. Elamin, MH, Daghestani, MH, Omer, SA, Elobeid, MA, Virk, P, Al-Olayan, EM, et al.. Food Chem Toxicol 2013;53:310–16. https://doi.org/10.1016/j.fct.2012.12.009.Search in Google Scholar PubMed

66. Zhang, C, Zhang, J, Xin, X, Zhu, S, Niu, E, Wu, Q, et al.. Front Nutr 2022;9:854680. https://doi.org/10.3389/fnut.2022.854680.Search in Google Scholar PubMed PubMed Central

67. Servili, M, Sordini, B, Esposto, S, Urbani, S, Veneziani, G, Maio, ID, et al.. Antioxidants 2013;3:1–23. https://doi.org/10.3390/antiox3010001.Search in Google Scholar PubMed PubMed Central

68. Škerget, M, Kotnik, P, Hadolin, M, Hraš, AR, Simonič, M, Knez, Ž. Food Chem 2005;89:191–8.10.1016/j.foodchem.2004.02.025Search in Google Scholar

69. Talhaoui, N, Gómez-Caravaca, AM, Roldan, C, Leon, L, De la Rosa, R, Fernandez-Gutierrez, A, et al.. J Agric Food Chem 2015;63:1722–9. https://doi.org/10.1021/jf5058205.Search in Google Scholar PubMed

70. Ammar, S, Kelebek, H, Zribi, A, Abichou, M, Selli, S, Bouaziz, M. Food Res Int 2017;100:477–85. https://doi.org/10.1016/j.foodres.2016.11.001.Search in Google Scholar PubMed

71. Kontogianni, VG, Tomic, G, Nikolic, I, Nerantzaki, AA, Sayyad, N, Stosic-Grujicic, S, et al.. Food Chem 2013;136:120–9. https://doi.org/10.1016/j.foodchem.2012.07.091.Search in Google Scholar PubMed

72. Cicerale, S, Lucas, L, Keast, R. Curr Opin Biotechnol 2012;23:129–35. https://doi.org/10.1016/j.copbio.2011.09.006.Search in Google Scholar PubMed

73. Obied, HK, Bedgood, DRJr., Prenzler, PD, Robards, K. Anal Chim Acta 2007;603:176–89. https://doi.org/10.1016/j.aca.2007.09.044.Search in Google Scholar PubMed

74. Deepika, Maurya, PK. Molecules 2022;27:2498. https://doi.org/10.3390/molecules27082498.Search in Google Scholar PubMed PubMed Central

75. Mustafa, AM, Abouelenein, D, Angeloni, S, Maggi, F, Navarini, L, Sagratini, G, et al.. Foods 2022;11:3033. https://doi.org/10.3390/foods11193033.Search in Google Scholar PubMed PubMed Central

76. Karković Marković, A, Torić, J, Barbarić, M, Jakobušić Brala, C. Molecules 2019;24:2001.10.3390/molecules24102001Search in Google Scholar PubMed PubMed Central

77. Žugčić, T, Abdelkebir, R, Alcantara, C, Collado, MC, García-Pérez, JV, Meléndez-Martínez, AJ, et al.. Trends Food Sci Technol 2019;83:63–77.10.1016/j.tifs.2018.11.005Search in Google Scholar

78. de Oliveira, NM, Machado, J, Chéu, MH, Lopes, L, Criado, MB. Appl Biosci 2024;3:392–425. https://doi.org/10.3390/applbiosci3030026.Search in Google Scholar

79. Ahmed, S, Zengin, G, Selvi, S, Ak, G, Cziáky, Z, Jekő, J, et al.. Pathogens 2024;13:795. https://doi.org/10.3390/pathogens13090795.Search in Google Scholar PubMed PubMed Central

80. Sinan, KI, Dall’Acqua, S, Sut, S, Uba, AI, Etienne, OK, Ferrante, C, et al.. Plants 2024;13:2195.10.3390/plants13162195Search in Google Scholar PubMed PubMed Central

81. Dall’Acqua, S, Sut, S, Baskose, I, Kargılı, U, Orlando, G, Zengin, G. Microchem J 2024;198:110183.10.1016/j.microc.2024.110183Search in Google Scholar

82. Ahmed, S, Sinan, KI, Nilofar, C, Ferrante, C, Eyupoğlu, OE, Etienne, OK, et al.. J Biol Regul Homeost Agents 2023;37:6029–39.Search in Google Scholar

83. Kesen, S, Kelebek, H, Selli, S. J Am Oil Chem Soc 2013;90:1685–96. https://doi.org/10.1007/s11746-013-2327-8.Search in Google Scholar

84. Rice-Evans, C, Miller, N, Paganga, G. Trends Plant Sci 1997;2:152–9.10.1016/S1360-1385(97)01018-2Search in Google Scholar

85. Danjolli-Hashani, D, Isbilir, SS. Herba Pol 2024;70:9–20. https://doi.org/10.5604/01.3001.0054.6433.Search in Google Scholar

86. Pietta, P-G. J Nat Prod 2000;63:1035–42. https://doi.org/10.1021/np9904509.Search in Google Scholar PubMed

87. Anter, J, Fernández-Bedmar, Z, Villatoro-Pulido, M, Demyda-Peyras, S, Moreno-Millán, M, Alonso-Moraga, Á, et al.. Mutat Res, Genet Toxicol Environ Mutagen 2011;723:165–70. https://doi.org/10.1016/j.mrgentox.2011.05.005.Search in Google Scholar PubMed

88. Fabiani, R, Rosignoli, P, De Bartolomeo, A, Fuccelli, R, Servili, M, Montedoro, GF, et al.. J Nutr 2008;138:1411–16. https://doi.org/10.1093/jn/138.8.1411.Search in Google Scholar PubMed

89. Anter, J, Campos-Sánchez, J, El Hamss, R, Rojas-Molina, M, Muñoz-Serrano, A, Analla, M, et al.. Mutat Res, Genet Toxicol Environ Mutagen 2010;703:137–42. https://doi.org/10.1016/j.mrgentox.2010.08.012.Search in Google Scholar PubMed

90. Shen, N, Wang, T, Gan, Q, Liu, S, Wang, L, Jin, B. Food Chem 2022;383:132531. https://doi.org/10.1016/j.foodchem.2022.132531.Search in Google Scholar PubMed

91. Sinan, KI, Eyupoglu, OE, Ferrante, C, Ahmed, S, Etienne, OK, Zengin, G. Microchem J 2024;197:109847.10.1016/j.microc.2023.109847Search in Google Scholar

92. Nilofar, Bahadırlı, NP, Elhawary, EA, Eldahshan, O, Singab, AN, Saka, E, et al.. eFood 2024;5:e70012. https://doi.org/10.1002/efd2.70012.Search in Google Scholar

93. Zengin, G, Uba, AI, Abul, N, Gulcin, I, Koyuncu, I, Yuksekdag, O, et al.. Food Biosci 2024;62:105088.10.1016/j.fbio.2024.105088Search in Google Scholar

94. Abd El-Aziz, NM, Awad, OME, Shehata, MG, El-Sohaimy, SA. Food Biosci 2021;41:101006. https://doi.org/10.1016/j.fbio.2021.101006.Search in Google Scholar

95. Işık, M, Beydemir, Ş. J Biomol Struct Dyn 2021;39:6515–23.10.1080/07391102.2020.1801509Search in Google Scholar PubMed

96. Fitzpatrick, TB, Becker, SWJr., Lerner, AB, Montgomery, H. Science 1950;112:223–5. https://doi.org/10.1126/science.112.2904.223.Search in Google Scholar PubMed

97. Kim, D, Park, J, Kim, J, Han, C, Yoon, J, Kim, N, et al.. J Agric Food Chem 2006;54:935–41. https://doi.org/10.1021/jf0521855.Search in Google Scholar PubMed

98. Chiba, S. Biosci Biotechnol Biochem 1997;61:1233–9. https://doi.org/10.1271/bbb.61.1233.Search in Google Scholar PubMed

99. Lebovitz, HE. Drugs 1992;44:21–8. https://doi.org/10.2165/00003495-199200443-00004.Search in Google Scholar PubMed

100. Fu, S, Arráez-Roman, D, Segura-Carretero, A, Menéndez, JA, Menéndez-Gutiérrez, MP, Micol, V, et al.. Anal Bioanal Chem 2010;397:643–54. https://doi.org/10.1007/s00216-010-3604-0.Search in Google Scholar PubMed

101. Hashim, YZY, Rowland, IR, McGlynn, H, Servili, M, Selvaggini, R, Taticchi, A, et al.. Int J Cancer 2008;122:495–500. https://doi.org/10.1002/ijc.23148.Search in Google Scholar PubMed

102. Samet, I, Han, J, Jlaiel, L, Sayadi, S, Isoda, H. Oxid Med Cell Longev 2014;2014:927619. https://doi.org/10.1155/2014/927619.Search in Google Scholar PubMed PubMed Central

103. Miura, N, Shinohara, Y. Biochem Biophys Res Commun 2009;390:733–7. https://doi.org/10.1016/j.bbrc.2009.10.039.Search in Google Scholar PubMed

104. Fan, C, Wang, W, Zhao, B, Zhang, S, Miao, J. Bioorg Med Chem 2006;14:3218–22. https://doi.org/10.1016/j.bmc.2005.12.035.Search in Google Scholar PubMed

105. Marelli, MM, Limonta, P, Maggi, R, Motta, M, Moretti, R. Prostate 2000;45:238–44.10.1002/1097-0045(20001101)45:3<238::AID-PROS6>3.0.CO;2-WSearch in Google Scholar

106. Wu, J, Yang, R, Zhang, L, Fan, Z, Liu, S. Toxicol Mech Methods 2015;25:312–19. https://doi.org/10.3109/15376516.2015.1031415.Search in Google Scholar

107. El Hilali, H, El Hilali, F, Porter, SE, Ghali, SA, Meyls, HM, Ouazzani, N, et al.. Mediterr J Nutr Metabol 2020;13:89–100. https://doi.org/10.3233/mnm-190390.Search in Google Scholar

108. Ferreira do Amaral, V, dos Santos, ACM, Moura, JGL, de Castilhos, J, Gemelli, T, Hoffmann, JF, et al.. Nat Prod Res 2022;36:4486–91. https://doi.org/10.1080/14786419.2021.1986708.Search in Google Scholar

109. Lozano-Sanchez, J, Segura-Carretero, A, Menendez, JA, Oliveras-Ferraros, C, Cerretani, L, Fernandez-Gutierrez, A. J Agric Food Chem 2010;58:9942–55. https://doi.org/10.1021/jf101502q.Search in Google Scholar

110. Williamson, P, van den Eijnde, S, Schlegel, RA. Methods Cell Biol 2001;66:339–64.10.1016/S0091-679X(01)66016-3Search in Google Scholar

111. Van Engeland, M, Nieland, LJ, Ramaekers, FC, Schutte, B, Reutelingsperger, CP. Cytometry 1998;31:1–9.10.1002/(SICI)1097-0320(19980101)31:1<1::AID-CYTO1>3.0.CO;2-RSearch in Google Scholar

112. Vermes, I, Haanen, C, Steffens-Nakken, H, Reutellingsperger, C. J Immunol Methods 1995;184:39–51.10.1016/0022-1759(95)00072-ISearch in Google Scholar

113. Kasibhatla, S, Amarante-Mendes, GP, Finucane, D, Brunner, T, Bossy-Wetzel, E, Green, DR. Cold Spring Harbor Protoc 2006;2006:pdb.prot4493. https://doi.org/10.1101/pdb.prot4494.Search in Google Scholar PubMed

114. Darzynkiewicz, Z, Bruno, S, Del Bino, G, Gorczyca, W, Hotz, M, Lassota, P, et al.. Cytometry 1992;13:795–808. https://doi.org/10.1002/cyto.990130802.Search in Google Scholar PubMed

115. Juan, ME, Wenzel, U, Ruiz-Gutierrez, V, Daniel, H, Planas, JM. J Nutr 2006;136:2553–7.10.1093/jn/136.10.2553Search in Google Scholar PubMed

116. Magyari-Pavel, IZ, Moacă, E-A, Avram, Ș, Diaconeasa, Z, Haidu, D, Ștefănuț, MN, et al.. Antioxidants 2024;13:774. https://doi.org/10.3390/antiox13070774.Search in Google Scholar PubMed PubMed Central

117. Liu, Y, McKeever, LC, Malik, NSA. Front Microbiol 2017;8:113. https://doi.org/10.3389/fmicb.2017.00113.Search in Google Scholar PubMed PubMed Central

118. Sánchez-Gutiérrez, M, Bascón-Villegas, I, Rodríguez, A, Pérez-Rodríguez, F, Fernández-Prior, Á, Rosal, A, et al.. Foods 2021;10:966.10.3390/foods10050966Search in Google Scholar PubMed PubMed Central

119. Gerlits, O, Ho, K-Y, Cheng, X, Blumenthal, D, Taylor, P, Kovalevsky, A, et al.. Chem Biol Interact 2019;309:108698. https://doi.org/10.1016/j.cbi.2019.06.011.Search in Google Scholar PubMed PubMed Central

120. Chen, X, Fang, L, Liu, J, Zhan, C-G. Biochemistry 2012;51:1297–305. https://doi.org/10.1021/bi201786s.Search in Google Scholar PubMed PubMed Central

121. Kaloni, D, Diepstraten, ST, Strasser, A, Kelly, GL. Apoptosis 2022;28:20–38. https://doi.org/10.1007/s10495-022-01780-7.Search in Google Scholar PubMed PubMed Central

122. Chagaleti, BK, B, SK, V, AG, Rajagopal, R, Alfarhan, A, Arockiaraj, J, et al.. Comput Biol Chem 2024;112:108134. https://doi.org/10.1016/j.compbiolchem.2024.108134.Search in Google Scholar PubMed

123. Noh, H, Lee, SJ, Jo, H-J, Choi, HW, Hong, S, Kong, K-H. J Enzym Inhib Med Chem 2020;35:726–32. https://doi.org/10.1080/14756366.2020.1740691.Search in Google Scholar PubMed PubMed Central

124. Gürer, ES, Yıldırım, Ş, Kocyigit, ÜM, Berisha, A, Kaya, S. J Mol Struct 2025;1321:139893.10.1016/j.molstruc.2024.139893Search in Google Scholar

125. Asgharzade, S, Sheikhshabani, SH, Ghasempour, E, Heidari, R, Rahmati, S, Mohammadi, M, et al.. Eur J Pharmacol 2020;886:173509. https://doi.org/10.1016/j.ejphar.2020.173509.Search in Google Scholar PubMed

126. Kashafi, E, Moradzadeh, M, Mohamadkhani, A, Erfanian, S. Biomed Pharmacother 2017;89:573–7. https://doi.org/10.1016/j.biopha.2017.02.061.Search in Google Scholar PubMed

127. Kim, SG, Sung, JY, Kim, JR, Choi, HC. Korean J Physiol Pharmacol 2020;24:69–79. https://doi.org/10.4196/kjpp.2020.24.1.69.Search in Google Scholar PubMed PubMed Central

128. Wang, Y, Zhang, W, Lv, Q, Zhang, J, Zhu, D. Tumor Biol 2016;37:925–9. https://doi.org/10.1007/s13277-015-3890-4.Search in Google Scholar PubMed

129. Xu, W, Liu, J, Li, C, Wu, H-Z, Liu, Y-W. Cancer Lett 2008;264:229–40. https://doi.org/10.1016/j.canlet.2008.01.044.Search in Google Scholar PubMed


Supplementary Material

This article contains supplementary material (https://doi.org/10.1515/znc-2025-0165).


Received: 2025-07-24
Accepted: 2025-08-28
Published Online: 2025-09-09

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 4.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znc-2025-0165/html
Scroll to top button