Utilizing olive leaves as a rich source of multifunctional bioactive compounds to fight oxidative stress, Alzheimer’s disease, diabetes, and cancer using in vitro, in silico, and bioinformatics techniques
-
Gunes Ak
and Gokhan Zengin
Abstract
Olive leaves are of significant interest in traditional medicine and in the development of functional nutraceuticals. In this study, the leaves of four olive varieties (Halhali, arbequina, gemlik, karamani) were utilized to examine and compare the chemical composition and biological activities, particularly their role in enzyme inhibition, cancer prevention, and apoptosis induction. Results showed that among the tested varieties analyzed, Gemlik (77.79 mg gallic acid equivalent (GAE)/g) and halhali (76.03 mg GAE/g) exhibited the phenolic contents while arbequina had the highest flavonoid content (36.51 mg rutin equivalent (RE)/g). Similarly, these two varieties of extracts recorded strong antioxidant activity in several assays. Gemlik (2.70 mg galantamine equivalent (GALAE)/g) and arbequina (2.59 mg GALAE/g) demonstrated the highest acetylcholinesterase (AChE) inhibition. The results of MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide)) assay showed arbequina provided the highest cytotoxic effect against HeLa cells (IC50 value: 60.59 μg/ml) and annexin-V/PI staining confirmed the inducing of apoptosis by arbequina in HeLa cells. In conclusion, the studied olive varieties of leaf extracts appeared to have more potential as a health supplement rich in natural antioxidants and merit further intensive study.
Acknowledgments
This research was supported by the Ministry of Science, Technological Development, and Innovation of the Republic of Serbia (Grant No. 451-03-136/2025-03/200007) and aligns with the United Nations Sustainable Development Goal (UNSDG) 3: Good Health and Well-Being.
-
Research ethics: Not applicable.
-
Informed consent: Not applicable.
-
Author contributions: Conceptualization, GA, N, PB, GZ; methodology, GA, N, AS, GC, IK, AIU, MMM, SK, GZ.; software, SK, MMM; validation, PB, GS, IK, IK, AIU; formal analysis, GZ; investigation, GA, N, PB, GZ, JG; resources, PB; data curation, AIU, SK, MMM writing – original draft preparation, GA, N, AS, GC, GZ, JG, DS; writing – review and editing, AIU, SK, MM, GZ.; visualization, AIU.; supervision, GZ.; project administration, GZ.; funding acquisition, GZ. All authors have read and agreed to the published version of the manuscript.”
-
Use of Large Language Models, AI and Machine Learning Tools: None declared.
-
Conflict of interest: The authors declare no competing interests.
-
Research funding: This research received no external funding.
-
Data availability: Data will be made available on request.
References
1. Ghanbari, R, Anwar, F, Alkharfy, KM, Gilani, A-H, Saari, N. Int J Mol Sci 2012;13:3291–340. https://doi.org/10.3390/ijms13033291.Search in Google Scholar PubMed PubMed Central
2. Boss, A, Bishop, KS, Marlow, G, Barnett, MP, Ferguson, LR. Nutrients 2016;8:513. https://doi.org/10.3390/nu8080513.Search in Google Scholar PubMed PubMed Central
3. Erbay, Z, Icier, F. Crit Rev Food Sci Nutr 2010;50:441–64. https://doi.org/10.1080/10408390802437063.Search in Google Scholar PubMed
4. Japón-Luján, R, Luque-Rodríguez, J, De Castro, ML. J Chromatogr A 2006;1108:76–82.10.1016/j.chroma.2005.12.106Search in Google Scholar PubMed
5. Ozkaya, M, Cakir, E, Gokbayrak, Z, Ercan, H, Taskin, N. Sci Hortic 2006;108:205–9. https://doi.org/10.1016/j.scienta.2006.01.016.Search in Google Scholar
6. Shendi, EG, Özay, DS, Özkaya, MT, Üstünel, NF. Croat J Food Sci Technol 2019;11:52–8. https://doi.org/10.3920/qas2018.1272.Search in Google Scholar
7. Demir, C, Yildiz, E, Gurbuz, O. Processes 2023;11:2412. https://doi.org/10.3390/pr11082412.Search in Google Scholar
8. Soni, M, Burdock, G, Christian, M, Bitler, C, Crea, R. Food Chem Toxicol 2006;44:903–15. https://doi.org/10.1016/j.fct.2006.01.008.Search in Google Scholar PubMed
9. Özcan, MM, Matthäus, B. Eur Food Res Technol 2017;243:89–99.10.1007/s00217-016-2726-9Search in Google Scholar
10. Hashmi, MA, Khan, A, Hanif, M, Farooq, U, Perveen, S. Evid-Based Complementary Alternative Med 2015;2015:541591. https://doi.org/10.1155/2015/541591.Search in Google Scholar PubMed PubMed Central
11. Oliveira, AL, Gondim, S, Gómez-García, R, Ribeiro, T, Pintado, M. J Environ Chem Eng 2021;9:106175. https://doi.org/10.1016/j.jece.2021.106175.Search in Google Scholar
12. Moudache, M, Colon, M, Nerín, C, Zaidi, F. Food Chem 2016;212:521–7. https://doi.org/10.1016/j.foodchem.2016.06.001.Search in Google Scholar PubMed
13. El, SN, Karakaya, S. Nutr Rev 2009;67:632–8. https://doi.org/10.1111/j.1753-4887.2009.00248.x.Search in Google Scholar PubMed
14. Qabaha, K, Al-Rimawi, F, Qasem, A, Naser, SA. J Med Food 2018;21:302–5. https://doi.org/10.1089/jmf.2017.0070.Search in Google Scholar PubMed
15. Wang, L, Geng, C, Jiang, L, Gong, D, Liu, D, Yoshimura, H, et al.. Eur J Nutr 2008;47:235–43. https://doi.org/10.1007/s00394-008-0717-8.Search in Google Scholar PubMed
16. Acar-Tek, N, Ağagündüz, D. Ann Nutr Metabol 2020;76:10–15. https://doi.org/10.1159/000505508.Search in Google Scholar PubMed
17. Zheng, J, Wei, J-T, Liu, J-F, Liu, Y-W. China J Chin Mater Med 2016;41:613–18.Search in Google Scholar
18. Rufino-Palomares, EE, Pérez-Jiménez, A, García-Salguero, L, Mokhtari, K, Reyes-Zurita, FJ, Peragón-Sánchez, J, et al.. Molecules 2022;27:2341. https://doi.org/10.3390/molecules27072341.Search in Google Scholar PubMed PubMed Central
19. Talhaoui, N, Taamalli, A, Gómez-Caravaca, AM, Fernández-Gutiérrez, A, Segura-Carretero, A. Food Res Int 2015;77:92–108. https://doi.org/10.1016/j.foodres.2015.09.011.Search in Google Scholar
20. Lukić, I, Pasković, I, Žurga, P, Majetić Germek, V, Brkljača, M, Marcelić, Š, et al.. Plants 2020;9:1667.10.3390/plants9121667Search in Google Scholar PubMed PubMed Central
21. Wang, B, Qu, J, Feng, S, Chen, T, Yuan, M, Huang, Y, et al.. Foods 2019;8:657. https://doi.org/10.3390/foods8120657.Search in Google Scholar PubMed PubMed Central
22. Lorini, A, Aranha, BC, da Fonseca Antunes, B, Otero, DM, Jacques, AC, Zambiazi, RC. Food Chem 2021;345:128758. https://doi.org/10.1016/j.foodchem.2020.128758.Search in Google Scholar PubMed
23. Guinda, Á, Pérez‐Camino, MC, Lanzón, A. Eur J Lipid Sci Technol 2004;106:22–6. https://doi.org/10.1002/ejlt.200300769.Search in Google Scholar
24. Nicolì, F, Negro, C, Vergine, M, Aprile, A, Nutricati, E, Sabella, E, et al.. Molecules 2019;24:1998.10.3390/molecules24101998Search in Google Scholar PubMed PubMed Central
25. Romero, C, García, A, Medina, E, Ruíz-Méndez, MV, de Castro, A, Brenes, M. Food Chem 2010;118:670–4. https://doi.org/10.1016/j.foodchem.2009.05.037.Search in Google Scholar
26. Kamran, M, Hamlin, AS, Scott, CJ, Obied, HK. Ind Crops Prod 2015;78:29–38. https://doi.org/10.1016/j.indcrop.2015.10.031.Search in Google Scholar
27. Ahmad-Qasem, MH, Canovas, J, Barrajon-Catalan, E, Carreres, JE, Micol, V, Garcia-Perez, JV. J Agric Food Chem 2014;62:6190–8. https://doi.org/10.1021/jf501414h.Search in Google Scholar PubMed
28. Spinelli, R, Picchi, G. Bioresour Technol 2010;101:730–5. https://doi.org/10.1016/j.biortech.2009.08.039.Search in Google Scholar PubMed
29. Zengin, G, Nithiyanantham, S, Locatelli, M, Ceylan, R, Uysal, S, Aktumsek, A, et al.. Eur J Integr Med 2016;8:286–92. https://doi.org/10.1016/j.eujim.2015.12.004.Search in Google Scholar
30. Santanatoglia, A, Caprioli, G, Cespi, M, Ciarlantini, D, Cognigni, L, Fioretti, L, et al.. LWT 2023;175:114471. https://doi.org/10.1016/j.lwt.2023.114471.Search in Google Scholar
31. Santanatoglia, A, Cespi, M, Perinelli, DR, Fioretti, L, Sagratini, G, Vittori, S, et al.. J Food Compos Anal 2023;124:105698. https://doi.org/10.1016/j.jfca.2023.105698.Search in Google Scholar
32. Mustafa, AM, Angeloni, S, Abouelenein, D, Acquaticci, L, Xiao, J, Sagratini, G, et al.. Food Chem 2022;367:130743. https://doi.org/10.1016/j.foodchem.2021.130743.Search in Google Scholar PubMed
33. Ricciutelli, M, Marconi, S, Boarelli, MC, Caprioli, G, Sagratini, G, Ballini, R, et al.. J Chromatogr, A 2017;1481:53–63. https://doi.org/10.1016/j.chroma.2016.12.020.Search in Google Scholar PubMed
34. Grochowski, DM, Uysal, S, Aktumsek, A, Granica, S, Zengin, G, Ceylan, R, et al.. Phytochem Lett 2017;20:365–72. https://doi.org/10.1016/j.phytol.2017.03.005.Search in Google Scholar
35. Soković, M, Glamočlija, J, Marin, PD, Brkić, D, van Griensven, LJLD. Molecules 2010;15:7532–46.10.3390/molecules15117532Search in Google Scholar PubMed PubMed Central
36. Soković, M, van Griensven, LJLD. Eur J Plant Pathol 2006;116:211–24.10.1007/s10658-006-9053-0Search in Google Scholar
37. Dileep, KV, Ihara, K, Mishima-Tsumagari, C, Kukimoto-Niino, M, Yonemochi, M, Hanada, K, et al.. Int J Biol Macromol 2022;210:172–81. https://doi.org/10.1016/j.ijbiomac.2022.05.009.Search in Google Scholar PubMed
38. Knez, D, Diez-Iriepa, D, Chioua, M, Gottinger, A, Denic, M, Chantegreil, F, et al.. Acta Pharm Sin B 2023;13:2152–75. https://doi.org/10.1016/j.apsb.2023.01.013.Search in Google Scholar PubMed PubMed Central
39. Nahoum, V, Roux, G, Anton, V, Rouge, P, Puigserver, A, Bischoff, H, et al.. Biochem J 2000;346:201–8. https://doi.org/10.1042/bj3460201.Search in Google Scholar
40. Souers, AJ, Leverson, JD, Boghaert, ER, Ackler, SL, Catron, ND, Chen, J, et al.. Nat Med 2013;19:202–8. https://doi.org/10.1038/nm.3048.Search in Google Scholar PubMed
41. Wood, DJ, Korolchuk, S, Tatum, NJ, Wang, L-Z, Endicott, JA, Noble, MEM, et al.. Cell Chem Biol 2019;26:121–30.e125. https://doi.org/10.1016/j.chembiol.2018.10.015.Search in Google Scholar PubMed PubMed Central
42. Kurumbail, RG, Stevens, AM, Gierse, JK, McDonald, JJ, Stegeman, RA, Pak, JY, et al.. Nature 1996;384:644–8. https://doi.org/10.1038/384644a0.Search in Google Scholar PubMed
43. Chiavaroli, A, Libero, ML, Di Simone, SC, Acquaviva, A, Nilofar, Recinella, L, Leone, S, et al.. Plants 2023;12:1132. https://doi.org/10.3390/plants12051132.Search in Google Scholar PubMed PubMed Central
44. Martínez-Rosell, G, Giorgino, T, De Fabritiis, G. J Chem Inf Model 2017;57:1511–16.10.1021/acs.jcim.7b00190Search in Google Scholar PubMed
45. Pettersen, EF, Goddard, TD, Huang, CC, Couch, GS, Greenblatt, DM, Meng, EC, et al.. J Comput Chem 2004;25:1605–12. https://doi.org/10.1002/jcc.20084.Search in Google Scholar PubMed
46. Morris, GM, Huey, R, Lindstrom, W, Sanner, MF, Belew, RK, Goodsell, DS, et al.. J Comput Chem 2009;30:2785–91. https://doi.org/10.1002/jcc.21256.Search in Google Scholar PubMed PubMed Central
47. Perdew, JP, Burke, K, Ernzerhof, M. Phys Rev Lett 1996;77:3865. https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar
48. Francl, MM, Pietro, WJ, Hehre, WJ, Binkley, JS, Gordon, MS, DeFrees, DJ, et al.. J Chem Phys 1982;77:3654–65. https://doi.org/10.1063/1.444267.Search in Google Scholar
49. Çelik, MS, Çaylak, O, Kütük, N, Yenidünya, AF, Çetinkaya, S, Maslov, MM, et al.. Biomass Convers Biorefin 2024;15:1041–56.10.1007/s13399-024-05287-wSearch in Google Scholar
50. Titov, AV, Ufimtsev, IS, Luehr, N, Martinez, TJ. J Chem Theor Comput 2013;9:213–21. https://doi.org/10.1021/ct300321a.Search in Google Scholar PubMed
51. Kästner, J, Carr, JM, Keal, TW, Thiel, W, Wander, A, Sherwood, P. J Phys Chem A 2009;113:11856–65.10.1021/jp9028968Search in Google Scholar PubMed
52. Goumans, T, Catlow, CRA, Brown, WA, Kästner, J, Sherwood, P. Phys Chem Chem Phys 2009;11:5431–6. https://doi.org/10.1039/b816905e.Search in Google Scholar PubMed
53. Wang, L-P, Song, C. J Chem Phys 2016;144:214108. https://doi.org/10.1063/1.4952956.Search in Google Scholar PubMed
54. Grimme, S, Antony, J, Ehrlich, S, Krieg, H. J Chem Phys 2010;132:154104. https://doi.org/10.1063/1.3382344.Search in Google Scholar PubMed
55. Islam, N, Kaya, S. Conceptual density functional theory and its application in the chemical domain. CRC Press; 2018.10.1201/b22471Search in Google Scholar
56. Kaya, Y, Kaya, S, Berisha, A, Erçağ, A. J Mol Struct 2023;1291:135973. https://doi.org/10.1016/j.molstruc.2023.135973.Search in Google Scholar
57. Parr, RG, Szentpály, Lv, Liu, S. J Am Chem Soc 1999;121:1922–4. https://doi.org/10.1021/ja983494x.Search in Google Scholar
58. von Szentpály, L, Kaya, S, Karakuş, N. J Phys Chem 2020;124:10897–908.10.1021/acs.jpca.0c08196Search in Google Scholar PubMed
59. Koopmans, T. Physica 1934;1:104–13.10.1016/S0031-8914(34)90011-2Search in Google Scholar
60. Kaya, S, Kaya, C. Mol Phys 2015;113:1311–19. https://doi.org/10.1080/00268976.2014.991771.Search in Google Scholar
61. Kaya, S, Robles-Navarro, A, Mejía, E, Gómez, T, Cardenas, C. J Phys Chem 2022;126:4507–16. https://doi.org/10.1021/acs.jpca.1c09898.Search in Google Scholar PubMed PubMed Central
62. Lockyer, S, Yaqoob, P, Spencer, JP, Rowland, I. Nutr Aging 2012;1:125–40. https://doi.org/10.3233/nua-2012-0011.Search in Google Scholar
63. Pandey, KB, Rizvi, SI. Oxid Med Cell Longev 2009;2:270–8. https://doi.org/10.4161/oxim.2.5.9498.Search in Google Scholar PubMed PubMed Central
64. Pietta, P, Minoggio, M, Bramati, L. Stud Nat Prod Chem 2003;28:257–312.10.1016/S1572-5995(03)80143-6Search in Google Scholar
65. Elamin, MH, Daghestani, MH, Omer, SA, Elobeid, MA, Virk, P, Al-Olayan, EM, et al.. Food Chem Toxicol 2013;53:310–16. https://doi.org/10.1016/j.fct.2012.12.009.Search in Google Scholar PubMed
66. Zhang, C, Zhang, J, Xin, X, Zhu, S, Niu, E, Wu, Q, et al.. Front Nutr 2022;9:854680. https://doi.org/10.3389/fnut.2022.854680.Search in Google Scholar PubMed PubMed Central
67. Servili, M, Sordini, B, Esposto, S, Urbani, S, Veneziani, G, Maio, ID, et al.. Antioxidants 2013;3:1–23. https://doi.org/10.3390/antiox3010001.Search in Google Scholar PubMed PubMed Central
68. Škerget, M, Kotnik, P, Hadolin, M, Hraš, AR, Simonič, M, Knez, Ž. Food Chem 2005;89:191–8.10.1016/j.foodchem.2004.02.025Search in Google Scholar
69. Talhaoui, N, Gómez-Caravaca, AM, Roldan, C, Leon, L, De la Rosa, R, Fernandez-Gutierrez, A, et al.. J Agric Food Chem 2015;63:1722–9. https://doi.org/10.1021/jf5058205.Search in Google Scholar PubMed
70. Ammar, S, Kelebek, H, Zribi, A, Abichou, M, Selli, S, Bouaziz, M. Food Res Int 2017;100:477–85. https://doi.org/10.1016/j.foodres.2016.11.001.Search in Google Scholar PubMed
71. Kontogianni, VG, Tomic, G, Nikolic, I, Nerantzaki, AA, Sayyad, N, Stosic-Grujicic, S, et al.. Food Chem 2013;136:120–9. https://doi.org/10.1016/j.foodchem.2012.07.091.Search in Google Scholar PubMed
72. Cicerale, S, Lucas, L, Keast, R. Curr Opin Biotechnol 2012;23:129–35. https://doi.org/10.1016/j.copbio.2011.09.006.Search in Google Scholar PubMed
73. Obied, HK, Bedgood, DRJr., Prenzler, PD, Robards, K. Anal Chim Acta 2007;603:176–89. https://doi.org/10.1016/j.aca.2007.09.044.Search in Google Scholar PubMed
74. Deepika, Maurya, PK. Molecules 2022;27:2498. https://doi.org/10.3390/molecules27082498.Search in Google Scholar PubMed PubMed Central
75. Mustafa, AM, Abouelenein, D, Angeloni, S, Maggi, F, Navarini, L, Sagratini, G, et al.. Foods 2022;11:3033. https://doi.org/10.3390/foods11193033.Search in Google Scholar PubMed PubMed Central
76. Karković Marković, A, Torić, J, Barbarić, M, Jakobušić Brala, C. Molecules 2019;24:2001.10.3390/molecules24102001Search in Google Scholar PubMed PubMed Central
77. Žugčić, T, Abdelkebir, R, Alcantara, C, Collado, MC, García-Pérez, JV, Meléndez-Martínez, AJ, et al.. Trends Food Sci Technol 2019;83:63–77.10.1016/j.tifs.2018.11.005Search in Google Scholar
78. de Oliveira, NM, Machado, J, Chéu, MH, Lopes, L, Criado, MB. Appl Biosci 2024;3:392–425. https://doi.org/10.3390/applbiosci3030026.Search in Google Scholar
79. Ahmed, S, Zengin, G, Selvi, S, Ak, G, Cziáky, Z, Jekő, J, et al.. Pathogens 2024;13:795. https://doi.org/10.3390/pathogens13090795.Search in Google Scholar PubMed PubMed Central
80. Sinan, KI, Dall’Acqua, S, Sut, S, Uba, AI, Etienne, OK, Ferrante, C, et al.. Plants 2024;13:2195.10.3390/plants13162195Search in Google Scholar PubMed PubMed Central
81. Dall’Acqua, S, Sut, S, Baskose, I, Kargılı, U, Orlando, G, Zengin, G. Microchem J 2024;198:110183.10.1016/j.microc.2024.110183Search in Google Scholar
82. Ahmed, S, Sinan, KI, Nilofar, C, Ferrante, C, Eyupoğlu, OE, Etienne, OK, et al.. J Biol Regul Homeost Agents 2023;37:6029–39.Search in Google Scholar
83. Kesen, S, Kelebek, H, Selli, S. J Am Oil Chem Soc 2013;90:1685–96. https://doi.org/10.1007/s11746-013-2327-8.Search in Google Scholar
84. Rice-Evans, C, Miller, N, Paganga, G. Trends Plant Sci 1997;2:152–9.10.1016/S1360-1385(97)01018-2Search in Google Scholar
85. Danjolli-Hashani, D, Isbilir, SS. Herba Pol 2024;70:9–20. https://doi.org/10.5604/01.3001.0054.6433.Search in Google Scholar
86. Pietta, P-G. J Nat Prod 2000;63:1035–42. https://doi.org/10.1021/np9904509.Search in Google Scholar PubMed
87. Anter, J, Fernández-Bedmar, Z, Villatoro-Pulido, M, Demyda-Peyras, S, Moreno-Millán, M, Alonso-Moraga, Á, et al.. Mutat Res, Genet Toxicol Environ Mutagen 2011;723:165–70. https://doi.org/10.1016/j.mrgentox.2011.05.005.Search in Google Scholar PubMed
88. Fabiani, R, Rosignoli, P, De Bartolomeo, A, Fuccelli, R, Servili, M, Montedoro, GF, et al.. J Nutr 2008;138:1411–16. https://doi.org/10.1093/jn/138.8.1411.Search in Google Scholar PubMed
89. Anter, J, Campos-Sánchez, J, El Hamss, R, Rojas-Molina, M, Muñoz-Serrano, A, Analla, M, et al.. Mutat Res, Genet Toxicol Environ Mutagen 2010;703:137–42. https://doi.org/10.1016/j.mrgentox.2010.08.012.Search in Google Scholar PubMed
90. Shen, N, Wang, T, Gan, Q, Liu, S, Wang, L, Jin, B. Food Chem 2022;383:132531. https://doi.org/10.1016/j.foodchem.2022.132531.Search in Google Scholar PubMed
91. Sinan, KI, Eyupoglu, OE, Ferrante, C, Ahmed, S, Etienne, OK, Zengin, G. Microchem J 2024;197:109847.10.1016/j.microc.2023.109847Search in Google Scholar
92. Nilofar, Bahadırlı, NP, Elhawary, EA, Eldahshan, O, Singab, AN, Saka, E, et al.. eFood 2024;5:e70012. https://doi.org/10.1002/efd2.70012.Search in Google Scholar
93. Zengin, G, Uba, AI, Abul, N, Gulcin, I, Koyuncu, I, Yuksekdag, O, et al.. Food Biosci 2024;62:105088.10.1016/j.fbio.2024.105088Search in Google Scholar
94. Abd El-Aziz, NM, Awad, OME, Shehata, MG, El-Sohaimy, SA. Food Biosci 2021;41:101006. https://doi.org/10.1016/j.fbio.2021.101006.Search in Google Scholar
95. Işık, M, Beydemir, Ş. J Biomol Struct Dyn 2021;39:6515–23.10.1080/07391102.2020.1801509Search in Google Scholar PubMed
96. Fitzpatrick, TB, Becker, SWJr., Lerner, AB, Montgomery, H. Science 1950;112:223–5. https://doi.org/10.1126/science.112.2904.223.Search in Google Scholar PubMed
97. Kim, D, Park, J, Kim, J, Han, C, Yoon, J, Kim, N, et al.. J Agric Food Chem 2006;54:935–41. https://doi.org/10.1021/jf0521855.Search in Google Scholar PubMed
98. Chiba, S. Biosci Biotechnol Biochem 1997;61:1233–9. https://doi.org/10.1271/bbb.61.1233.Search in Google Scholar PubMed
99. Lebovitz, HE. Drugs 1992;44:21–8. https://doi.org/10.2165/00003495-199200443-00004.Search in Google Scholar PubMed
100. Fu, S, Arráez-Roman, D, Segura-Carretero, A, Menéndez, JA, Menéndez-Gutiérrez, MP, Micol, V, et al.. Anal Bioanal Chem 2010;397:643–54. https://doi.org/10.1007/s00216-010-3604-0.Search in Google Scholar PubMed
101. Hashim, YZY, Rowland, IR, McGlynn, H, Servili, M, Selvaggini, R, Taticchi, A, et al.. Int J Cancer 2008;122:495–500. https://doi.org/10.1002/ijc.23148.Search in Google Scholar PubMed
102. Samet, I, Han, J, Jlaiel, L, Sayadi, S, Isoda, H. Oxid Med Cell Longev 2014;2014:927619. https://doi.org/10.1155/2014/927619.Search in Google Scholar PubMed PubMed Central
103. Miura, N, Shinohara, Y. Biochem Biophys Res Commun 2009;390:733–7. https://doi.org/10.1016/j.bbrc.2009.10.039.Search in Google Scholar PubMed
104. Fan, C, Wang, W, Zhao, B, Zhang, S, Miao, J. Bioorg Med Chem 2006;14:3218–22. https://doi.org/10.1016/j.bmc.2005.12.035.Search in Google Scholar PubMed
105. Marelli, MM, Limonta, P, Maggi, R, Motta, M, Moretti, R. Prostate 2000;45:238–44.10.1002/1097-0045(20001101)45:3<238::AID-PROS6>3.0.CO;2-WSearch in Google Scholar
106. Wu, J, Yang, R, Zhang, L, Fan, Z, Liu, S. Toxicol Mech Methods 2015;25:312–19. https://doi.org/10.3109/15376516.2015.1031415.Search in Google Scholar
107. El Hilali, H, El Hilali, F, Porter, SE, Ghali, SA, Meyls, HM, Ouazzani, N, et al.. Mediterr J Nutr Metabol 2020;13:89–100. https://doi.org/10.3233/mnm-190390.Search in Google Scholar
108. Ferreira do Amaral, V, dos Santos, ACM, Moura, JGL, de Castilhos, J, Gemelli, T, Hoffmann, JF, et al.. Nat Prod Res 2022;36:4486–91. https://doi.org/10.1080/14786419.2021.1986708.Search in Google Scholar
109. Lozano-Sanchez, J, Segura-Carretero, A, Menendez, JA, Oliveras-Ferraros, C, Cerretani, L, Fernandez-Gutierrez, A. J Agric Food Chem 2010;58:9942–55. https://doi.org/10.1021/jf101502q.Search in Google Scholar
110. Williamson, P, van den Eijnde, S, Schlegel, RA. Methods Cell Biol 2001;66:339–64.10.1016/S0091-679X(01)66016-3Search in Google Scholar
111. Van Engeland, M, Nieland, LJ, Ramaekers, FC, Schutte, B, Reutelingsperger, CP. Cytometry 1998;31:1–9.10.1002/(SICI)1097-0320(19980101)31:1<1::AID-CYTO1>3.0.CO;2-RSearch in Google Scholar
112. Vermes, I, Haanen, C, Steffens-Nakken, H, Reutellingsperger, C. J Immunol Methods 1995;184:39–51.10.1016/0022-1759(95)00072-ISearch in Google Scholar
113. Kasibhatla, S, Amarante-Mendes, GP, Finucane, D, Brunner, T, Bossy-Wetzel, E, Green, DR. Cold Spring Harbor Protoc 2006;2006:pdb.prot4493. https://doi.org/10.1101/pdb.prot4494.Search in Google Scholar PubMed
114. Darzynkiewicz, Z, Bruno, S, Del Bino, G, Gorczyca, W, Hotz, M, Lassota, P, et al.. Cytometry 1992;13:795–808. https://doi.org/10.1002/cyto.990130802.Search in Google Scholar PubMed
115. Juan, ME, Wenzel, U, Ruiz-Gutierrez, V, Daniel, H, Planas, JM. J Nutr 2006;136:2553–7.10.1093/jn/136.10.2553Search in Google Scholar PubMed
116. Magyari-Pavel, IZ, Moacă, E-A, Avram, Ș, Diaconeasa, Z, Haidu, D, Ștefănuț, MN, et al.. Antioxidants 2024;13:774. https://doi.org/10.3390/antiox13070774.Search in Google Scholar PubMed PubMed Central
117. Liu, Y, McKeever, LC, Malik, NSA. Front Microbiol 2017;8:113. https://doi.org/10.3389/fmicb.2017.00113.Search in Google Scholar PubMed PubMed Central
118. Sánchez-Gutiérrez, M, Bascón-Villegas, I, Rodríguez, A, Pérez-Rodríguez, F, Fernández-Prior, Á, Rosal, A, et al.. Foods 2021;10:966.10.3390/foods10050966Search in Google Scholar PubMed PubMed Central
119. Gerlits, O, Ho, K-Y, Cheng, X, Blumenthal, D, Taylor, P, Kovalevsky, A, et al.. Chem Biol Interact 2019;309:108698. https://doi.org/10.1016/j.cbi.2019.06.011.Search in Google Scholar PubMed PubMed Central
120. Chen, X, Fang, L, Liu, J, Zhan, C-G. Biochemistry 2012;51:1297–305. https://doi.org/10.1021/bi201786s.Search in Google Scholar PubMed PubMed Central
121. Kaloni, D, Diepstraten, ST, Strasser, A, Kelly, GL. Apoptosis 2022;28:20–38. https://doi.org/10.1007/s10495-022-01780-7.Search in Google Scholar PubMed PubMed Central
122. Chagaleti, BK, B, SK, V, AG, Rajagopal, R, Alfarhan, A, Arockiaraj, J, et al.. Comput Biol Chem 2024;112:108134. https://doi.org/10.1016/j.compbiolchem.2024.108134.Search in Google Scholar PubMed
123. Noh, H, Lee, SJ, Jo, H-J, Choi, HW, Hong, S, Kong, K-H. J Enzym Inhib Med Chem 2020;35:726–32. https://doi.org/10.1080/14756366.2020.1740691.Search in Google Scholar PubMed PubMed Central
124. Gürer, ES, Yıldırım, Ş, Kocyigit, ÜM, Berisha, A, Kaya, S. J Mol Struct 2025;1321:139893.10.1016/j.molstruc.2024.139893Search in Google Scholar
125. Asgharzade, S, Sheikhshabani, SH, Ghasempour, E, Heidari, R, Rahmati, S, Mohammadi, M, et al.. Eur J Pharmacol 2020;886:173509. https://doi.org/10.1016/j.ejphar.2020.173509.Search in Google Scholar PubMed
126. Kashafi, E, Moradzadeh, M, Mohamadkhani, A, Erfanian, S. Biomed Pharmacother 2017;89:573–7. https://doi.org/10.1016/j.biopha.2017.02.061.Search in Google Scholar PubMed
127. Kim, SG, Sung, JY, Kim, JR, Choi, HC. Korean J Physiol Pharmacol 2020;24:69–79. https://doi.org/10.4196/kjpp.2020.24.1.69.Search in Google Scholar PubMed PubMed Central
128. Wang, Y, Zhang, W, Lv, Q, Zhang, J, Zhu, D. Tumor Biol 2016;37:925–9. https://doi.org/10.1007/s13277-015-3890-4.Search in Google Scholar PubMed
129. Xu, W, Liu, J, Li, C, Wu, H-Z, Liu, Y-W. Cancer Lett 2008;264:229–40. https://doi.org/10.1016/j.canlet.2008.01.044.Search in Google Scholar PubMed
Supplementary Material
This article contains supplementary material (https://doi.org/10.1515/znc-2025-0165).
© 2025 Walter de Gruyter GmbH, Berlin/Boston