Startseite Lebenswissenschaften Studies on the pharmacological potential of starfish Luidia maculata using acute oral toxicity, in vivo anti-nociceptive, locomotor, and in vitro cytotoxic activities
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Studies on the pharmacological potential of starfish Luidia maculata using acute oral toxicity, in vivo anti-nociceptive, locomotor, and in vitro cytotoxic activities

  • Suguna Anbukkarasu , Prabhu Kolandhasamy ORCID logo EMAIL logo , Bragadeeswaran Subramanian und Ramachandran Vinayagam ORCID logo EMAIL logo
Veröffentlicht/Copyright: 15. August 2025

Abstract

In the present study, starfish (Luidia maculata) specimens were collected from bycatch trash fish at a fish landing center, and their pharmacological and cytotoxic potentials were evaluated through acute oral toxicity, in vivo anti-nociceptive and locomotor assays, as well as in vitro cytotoxicity assay. The crude ethanol extract from starfish L. maculata was purified by liquid–liquid partition chromatography using cyclohexane and n-butanol was used to determine the acute oral toxicity (LD50) and a histopathological examination of the rat. In acute oral toxicity studies, an LD50 value of 33.33 % of mortality was observed at 2000 mg/kg per oral dosage of the extract. Oral administration extract (2000 mg/kg) revealed significant histopathological alterations in tissues when compared to the control rats. Both in thermal and chemical-induced analgesic methods, administered extract (400 mg/kg bw) showed the maximum analgesic activity. In the tail flick method, the high dose of the extract significantly elevated the pain threshold throughout the observation period, with all groups showing increased pain tolerance over time. In locomotor activity, the highest percentage reduction (91.16 %) was observed in group IV animals after 90 min of administration, which showed the potent CNS depressant activity of the extract. The extract exhibited significant cytotoxicity against MCF-7 cells with a low IC50 of 6.51 µg. Hence, the result of the present study showed the anti-nociceptive, CNS depressant cytotoxic properties of starfish L. maculata.


Corresponding authors: Prabhu Kolandhasamy, Marine Toxicology and Bioprospecting Lab, Centre for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, India, E-mail: ; and Ramachandran Vinayagam, Department of Biotechnology, Institute of Biotechnology, School of Life and Applied Sciences, Yeungnam University, Gyeongsan, 38541, Republic of Korea, E-mail:

  1. Research ethics: In the study, the guideline about the Institutional Ethical Committee Reg.No:160/1999/CPCSEA/Proposal No.1048 (dated 29.11.2013), Rajah Muthiah Medical College and Hospital, Annamalai University, India.

  2. Informed consent: Not applicable.

  3. Author contributions: Conceptualization, methodology, software, S.A. and P.K. investigation and data curation, B.S. resources, R.V. writing – original draft preparation, S.A. and P.K. writing – review and editing, R.V. visualization, supervision, B.S. All authors have read and agreed to the published version of the manuscript.

  4. Use of Large Language Models, AI and Machine Learning Tools: Not applicable.

  5. Conflict of interest: Authors declare no conflict of interest.

  6. Research funding: Not applicable.

  7. Data availability: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

References

1. Jimeno, J, Faircloth, G, Fernandez Sousa-Faro, JM, Scheuer, P, Rinehart, K. New marine-derived anticancer therapeutics: a journey from the sea to clinical trials. Mar Drugs 2004;2:14–29. https://doi.org/10.3390/md201014.Suche in Google Scholar

2. Leal, MC, Madeira, C, Brandao, CA, Puga, J, Calado, R. Bioprospecting of marine invertebrates for new natural products: a chemical and zoogeographical perspective. Molecules 2012;17:9842–54. https://doi.org/10.3390/molecules17089842.Suche in Google Scholar PubMed PubMed Central

3. Koyama, T, Chounan, R, Uemura, D, Yamaguchi, K, Yazawa, K. Hepatoprotective effect of a hot-water extract from the edible thorny oyster Spondylus varius on carbon tetrachloride induced liver injury in mice. Biosci Biotechnol Biochem 2006;70:729–31. https://doi.org/10.1271/bbb.70.729.Suche in Google Scholar PubMed

4. Prokofieva, NG, Chaikina, EL, Kicha, AA, Ivanchina, NV. Biological activities of steroid glycosides from starfish. Comp Biochem Physiol B 2003;134:695–701. https://doi.org/10.1016/S1096-4959(03)00029-0.Suche in Google Scholar PubMed

5. Dong, G, Xu, TH, Yang, B, Lin, XP, Zhou, XF, Yang, XW, et al.. Chemical constituents and bioactivities of starfish. Chem Biodivers 2011;8:740–91. https://doi.org/10.1002/cbdv.200900344.Suche in Google Scholar PubMed

6. Goldsmith, LA. Pharmacological evaluation of an asterosaponin extract from Asterias forbesi (Desor). Kingston, United States: University of Rhode Island; 1975:1–100 pp. MSc Thesis.Suche in Google Scholar

7. Kanagarajan, U, Bragadeeswaran, S, Venkateshwaran, K. On some toxinological aspects of the starfish Stellaster equestris (Retzius, 1805). J Venom Anim Toxins Incl Trop Dis 2008;14:435–49. https://doi.org/10.1590/s1678-91992008000300005.Suche in Google Scholar

8. Suguna, A, Bragadeeswaran, S, Prabhu, K, Priyatharsini, S, Mohanraj, M, Sivaramakrishnan, S. Cytolytic and antinociceptive activities of starfish Protoreaster linckii (Blainvilli, 1893). Afr J Pharm Pharmacol 2013;7:2734–42. https://doi.org/10.5897/AJPP12.1423.Suche in Google Scholar

9. Nagarajan, P, Sivakumar, AS, Govindasamy, C, El Newehy, AS, Louis, LR, Sivanandham, M, et al.. Molecular perspective on starfish tissue extracts: targeting human carcinoma KB cells for anticancer therapy. J King Saud Univ Sci 2024;36:103035. https://doi.org/10.1016/j.jksus.2023.103035.Suche in Google Scholar

10. Zhang, W, Guo, YW, Gu, Y. Secondary metabolites from the South China Sea invertebrates: chemistry and biological activity. Curr Med Chem 2006;13:2041–90. https://doi.org/10.2174/092986706777584960.Suche in Google Scholar PubMed

11. Wikarta, JM, Kim, SM. Anti-inflammatory activity and cytotoxicity of the starfish extracts on cancer cell lines. Med Chem 2016;6:331–8. https://doi.org/10.4172/2161-0444.1000366.Suche in Google Scholar

12. Parajuli, K, Fahim, N, Mumu, S, Palu, R, Mustafa, A. Antibacterial potential of Luidia clathrata (sea star) tissue extracts against selected pathogenic bacteria. PLoS One 2023;18:e0281889. https://doi.org/10.1371/journal.pone.0281889.Suche in Google Scholar PubMed PubMed Central

13. Suguna, A, Bragadeeswaran, S, Natarajan, E, Mohanraj, M. Studies on antioxidant properties of starfish Luidia maculata (Muller & Troschel, 1842) off Parangipettai, Southeast coast of India. J Coast Life Med 2014;2:694–8. https://doi.org/10.12980/JCLM.2.2014JCLM-2014-0014.Suche in Google Scholar

14. Chamundeeswari, K, Saranya, S, Rajagopal, S. Exploration of potential antimicrobial activity of sea star astropecten indicus. J Appl Pharm Sci 2012;30:125–8.10.7324/JAPS.2012.2716Suche in Google Scholar

15. Thao, NP, Cuong, NX, Luyen, BTT, Nam, NH, Cuong, PV, Thanh, NV, et al.. Steroidal constituents from the starfish Astropecten polyacanthus and their anticancer effects. Chem Pharm Bull 2013;61:1044–51. https://doi.org/10.1248/cpb.c13-00490.Suche in Google Scholar PubMed

16. Hyman, LH. The invertebrates: IV: echinodermata. New York: McGraw-Hill; 1955:763 p.Suche in Google Scholar

17. Clark, AM. Starfishes and their relations, 2nd ed.. London: The British Museum (Natural History); 1968:120 p.Suche in Google Scholar

18. Braekman, JC, Daloze, D, Stoller, C, Van Soest, RWM. Chemotaxonomy of agelas (Porifera: Demospongiae). Biochem Syst Ecol 1992;20:417–31. https://doi.org/10.1016/0305-1978(92)90082-O.Suche in Google Scholar

19. D’Amour, FE, Smith, DL. A method for determining loss of pain sensation. J Pharmacol Exp Ther 1941;72:74–9. https://doi.org/10.1016/s0022-3565-25-03823-6.Suche in Google Scholar

20. Whittle, BA. The use of changes in capillary permeability in mice to distinguish between narcotic and non-narcotic analgesics. Br J Pharmacol Chemother 1964;22:246–53. https://doi.org/10.1111/j.1476-5381.1964.tb02030.x.Suche in Google Scholar PubMed PubMed Central

21. Mosmann, T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:55–63. https://doi.org/10.1016/0022-1759(83)90303-4.Suche in Google Scholar PubMed

22. Syed, MH, Gnanakkan, A, Pitchiah, S. Exploration of acute toxicity, analgesic, anti-inflammatory, and anti-pyretic activities of the black tunicate, Phallusia nigra (Savigny, 1816) using mice model. Environ Sci Poll Res 2021;28:5809–21. https://doi.org/10.1007/s11356-020-10938-2.Suche in Google Scholar PubMed

23. Abu, GO, Weiner, RM, Rice, J, Colwell, RR. Properties of an extracellular adhesive polymer from the marine bacterium Shewanella colwelliana. Biofouling 1991;3:69–84. https://doi.org/10.1080/08927019109378163.Suche in Google Scholar

24. Ridzwan, BH, Zarina, MZ, Kaswandi, MA, Nadirah, M, Shamsuddin, AF. The antinociceptive effects of extracts from Stichopus chloronotus Brandt. Pak J Biol Sci 2001;4:244–6. https://doi.org/10.3923/pjbs.2001.244.246.Suche in Google Scholar

25. Isaac Dhinakaran, D, Lipton, AP. Pharmacological potentials of sea cucumber Holothuria atra extracts from the Indian Ocean. Asian J Biomed Pharm Sci 2014;4:36–43. https://doi.org/10.1186/2193-1801-3-673.Suche in Google Scholar PubMed PubMed Central

26. Ridzwan, BH, Leong, TC, Idid, SZ. The antinociceptive effects of water extracts from sea cucumbers Holothuria leucospilota Brandt, Bohadschia marmorata vitensis Jaeger and coelomic fluid from Stichopus hermanii. Pak J Biol Sci 2003;6:2068–72. https://doi.org/10.3923/pjbs.2003.2068.2072.Suche in Google Scholar

27. Deraedt, R, Joughney, S, Delevakee, F, Falhour, M. Release of prostaglandin E and F in an algogenic reaction and its inhibition. Eur J Pharmacol 1980;61:17–24. https://doi.org/10.1016/0014-2999(80)90377-5.Suche in Google Scholar PubMed

28. Tang, HF, Yi, YH, Li, L, Sun, P, Zhang, SQ, Zhao, YP. Asterosaponins from the starfish Culcita novaeguineae and their bioactivities. Fitoterapia 2006;77:28–34. https://doi.org/10.1016/j.fitote.2005.07.009.Suche in Google Scholar PubMed

29. Cheng, G, Zhang, X, Tang, HF, Zhang, Y, Zhang, XH, Cao, WD, et al.. Asterosaponin 1, a cytostatic compound from the starfish Culcita novaeguineae functions by inducing apoptosis in human glioblastoma U87MG cells. J Neuro Oncol 2006;79:235–41. https://doi.org/10.1007/s11060-006-9136-y.Suche in Google Scholar PubMed

30. Ma, N, Tang, HF, Qin, F, Lin, HW, Tian, XR, Yao, MN. Polyhydroxysteroidal glycosides from the starfish Anthenea chinensis. J Nat Prod 2010;73:590–7. https://doi.org/10.1021/np9007188.Suche in Google Scholar PubMed

31. Quang, TH, Lee, DS, Han, SJ, Kim, IC, Yim, JH, Kim, YC, et al.. Steroids from the cold water starfish Ctenodiscus crispatus with cytotoxic and apoptotic effects on human hepatocellular carcinoma and glioblastoma cells. Bull Korean Chem Soc 2014;35:2335–41. https://doi.org/10.5012/bkcs.2014.35.8.2335.Suche in Google Scholar

32. Lee, CC, Hsieh, HJ, Hsieh, CH, Hwang, DF. Plancitoxin I from the venom of crown-of-thorns starfish (Acanthaster planci) induces oxidative and endoplasmic reticulum stress associated cytotoxic A375.S2 cells. Exp Mol Pathol 2015;99:7–15. https://doi.org/10.1016/j.yexmp.2015.05.001.Suche in Google Scholar PubMed

33. Vien, LT, Ngoan, BT, Hanh, TTH, Vinh, LB, Thung, DC, Thao, DT, et al.. Steroid glycosides from the starfish Pentaceraster gracilis. J Asian Nat Prod Res 2016;19:474–80. https://doi.org/10.1080/10286020.2016.1235038.Suche in Google Scholar PubMed

34. Malyarenko, OS, Dyshlovoy, SA, Kicha, AA, Ivanchina, NV, Malyarenko, TV, Carsten, B, et al.. The inhibitory activity of luzonicosides from the starfish Echinaster luzonicus against human melanoma cells. Mar Drugs 2017;15:227. https://doi.org/10.3390/md15070227.Suche in Google Scholar PubMed PubMed Central

35. Malyarenko, TV, Malyarenko, OS, Kicha, AA, Ivanchina, NV, Kalinovsky, AI, Dmitrenok, PS, et al.. In vitro anticancer and proapoptotic activities of steroidal glycosides from the starfish Anthenea aspera. Mar Drugs 2018;16:1–14. https://doi.org/10.3390/md16110420.Suche in Google Scholar PubMed PubMed Central

36. Ha, DT, Kicha, AA, Kalinovsky, AI, Malyarenko, TV, Popov, RS, Malyarenko, OS, et al.. Asterosaponins from the tropical starfish Acanthaster planci and their cytotoxic and anticancer activities in vitro. Nat Prod Res 2019;35:548–55. https://doi.org/10.1080/14786419.2019.1585845.Suche in Google Scholar PubMed

37. Malyarenko, TV, Malyarenko, OS, Kicha, AA, Kalinovsky, AI, Dmitrenok, PS, Ivanchina, NV. In vitro anticancer and cancer-preventive activity of new triterpene glycosides from the Far Eastern starfish Solaster pacificus. Mar Drugs 2022;20:1–24. https://doi.org/10.3390/md20030216.Suche in Google Scholar PubMed PubMed Central

38. Malyarenko, TV, Kicha, AA, Malyarenko, OS, Zakharenko, VM, Kotlyarov, IP, Kalinovsky, AI, et al.. New conjugates of polyhydroxysteroids with long-chain fatty acids from the deep-water Far Eastern starfish Ceramaster patagonicus and their anticancer activity. Mar Drugs 2020;18:1–14. https://doi.org/10.3390/md18050260.Suche in Google Scholar PubMed PubMed Central

39. Kawatake, S, Nakamura, K, Inagaki, M, Higuchi, R. Isolation and structure determination of six glucocerebrosides from the starfish Luidia maculata. Chem Pharm Bull 2002;50:1091–6. https://doi.org/10.1248/cpb.50.1091.Suche in Google Scholar PubMed

40. Husni, A, Byung-Hun, U, Chung, D. Isolation and identification of antioxidants and tyrosinase inhibitors from Stichopus japonicus. Yogyakarta, Indonesia: Department of Fisheries, Faculty of Agriculture, Gadjah Mada University; 2011:1–18 pp. MSc Dissertation.Suche in Google Scholar

Received: 2025-05-18
Accepted: 2025-08-03
Published Online: 2025-08-15

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 30.12.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znc-2025-0105/html
Button zum nach oben scrollen