Startseite Navigating the landscape of theranostics in nuclear medicine: current practice and future prospects
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Navigating the landscape of theranostics in nuclear medicine: current practice and future prospects

  • Aayushi Shah ORCID logo , Akshada Dabhade ORCID logo , Hetvi Bharadia ORCID logo , Priyajeet S. Parekh ORCID logo , Mayur R. Yadav ORCID logo und Mehul R. Chorawala ORCID logo EMAIL logo
Veröffentlicht/Copyright: 29. Mai 2024
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Theranostics refers to the combination of diagnostic biomarkers with therapeutic agents that share a specific target expressed by diseased cells and tissues. Nuclear medicine is an exciting component explored for its applicability in theranostic concepts in clinical and research investigations. Nuclear theranostics is based on the employment of radioactive compounds delivering ionizing radiation to diagnose and manage certain diseases employing binding with specifically expressed targets. In the realm of personalized medicine, nuclear theranostics stands as a beacon of potential, potentially revolutionizing disease management. Studies exploring the theranostic profile of radioactive compounds have been presented in this review along with a detailed explanation of radioactive compounds and their theranostic applicability in several diseases. It furnishes insights into their applicability across diverse diseases, elucidating the intricate interplay between these compounds and disease pathologies. Light is shed on the important milestones of nuclear theranostics beginning with radioiodine therapy in thyroid carcinomas, MIBG labelled with iodine in neuroblastoma, and several others. Our perspectives have been put forth regarding the most important theranostic agents along with emerging trends and prospects.


Corresponding author: Mehul R. Chorawala, Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Ahmedabad 380009, Gujarat, India, E-mail:

Acknowledgment

The authors are grateful to Prof. Gaurang B. Shah, Department of Pharmacology, L. M. College of Pharmacy, Ahmedabad, Gujarat, India for kind support and guidance in manuscript preparation. The authors also extend their appreciation to L. M. College of Pharmacy, Ahmedabad, India for providing continuous library resources support throughout literature survey and data collection. The authors are also thankful to Sharaman Sci-Med Writing Association, India for designing Figure 2 and providing continuous support for improvising figures dpi during revision 1.

  1. Research ethics: Not applicable.

  2. Author contributions: AS – manuscript original first draft preparation and subsequent editing, literature and data survey, figures designing, addressed the reviewers’ comments; AD, HB – literature and data survey, manuscript editing, figures, tables and references; MRY – addressed the reviewers’ comments; PSP – manuscript draft review and editing, referencing; MRC – review topic conception, design of content and skeleton, manuscript draft review and editing; figures and tables conception, reviewed and addressed reviewers’ comments.

  3. Competing interests: The authors declare no conflict of interest to report.

  4. Research funding: The authors declare that no funds, grants, or other support have been received during or for the preparation of this manuscript.

  5. Data availability: As our manuscript is review article, no new data were created or analyzed in this study. Data sharing does not apply to this article. However, the datasets/tables/figures generated during during the preparation of current manuscript are available from the corresponding author on reasonable request.

References

1. Baird, JK. 8-Aminoquinoline therapy for latent malaria. Clin Microbiol Rev 2019;32:e00011–19. https://doi.org/10.1128/CMR.00011-19.Suche in Google Scholar PubMed PubMed Central

2. Tewabe, A, Abate, A, Tamrie, M, Seyfu, A, Abdela Siraj, E. Targeted drug delivery — from magic bullet to nanomedicine: principles, challenges, and future perspectives. J Multidiscip Healthc 2021;14:1711. https://doi.org/10.2147/jmdh.s313968.Suche in Google Scholar

3. Aydın, F. The effect of Roman mythology on medical terminology and the origins of disease names. Eskisehir Med J 2021;2:48–52. https://doi.org/10.48176/esmj.2021.17.Suche in Google Scholar

4. Vermeulen, K, Vandamme, M, Bormans, G, Cleeren, F. Design and challenges of radiopharmaceuticals. Semin Nucl Med 2019;49:339–56. https://doi.org/10.1053/j.semnuclmed.2019.07.001.Suche in Google Scholar PubMed

5. Yordanova, A, Eppard, E, Kürpig, S, Bundschuh, R, Schönberger, S, Gonzalez-Carmona, M, et al.. Theranostics in nuclear medicine practice. OncoTargets Ther 2017;10:4821–8. https://doi.org/10.2147/ott.s140671.Suche in Google Scholar

6. SM, S, LD, M, E, O. Radioactive iodine therapy; effect on functioning metastases of adenocarcinoma of the thyroid. J Am Med Assoc 1946;132:566–71.10.1001/jama.1946.02870490016004Suche in Google Scholar PubMed

7. Lepareur, N, Ramée, B, Mougin-Degraef, M, Bourgeois, M. Clinical advances and perspectives in targeted radionuclide therapy. Pharmaceutics 2023;15:1733. https://doi.org/10.3390/pharmaceutics15061733.Suche in Google Scholar PubMed PubMed Central

8. Hosono, M. Perspectives for concepts of individualized radionuclide therapy, molecular radiotherapy, and theranostic approaches. Nucl Med Mol Imaging 2019;53:167–71. https://doi.org/10.1007/s13139-019-00586-x.Suche in Google Scholar PubMed PubMed Central

9. Barca, C, Griessinger, CM, Faust, A, Depke, D, Essler, M, Windhorst, A, et al.. Expanding theranostic radiopharmaceuticals for tumor diagnosis and therapy. Pharmaceuticals 2022;15:13. https://doi.org/10.3390/ph15010013.Suche in Google Scholar PubMed PubMed Central

10. Herrmann, K, Larson, SM, Weber, WA. Theranostic concepts: more than just a fashion trend—introduction and overview. J Nucl Med 2017;58:1S–2S. https://doi.org/10.2967/jnumed.117.199570.Suche in Google Scholar PubMed

11. Langbein, T, Weber, WA, Eiber, M. Future of theranostics: an outlook on precision oncology in nuclear medicine. J Nucl Med 2019;60:13S–19S. https://doi.org/10.2967/jnumed.118.220566.Suche in Google Scholar PubMed

12. Sartor, O, de Bono, J, Chi, KN, Fizazi, K, Herrmann, K, Rahbar, K, et al.. Lutetium-177-PSMA-617 for metastatic castration-resistant prostate cancer. N Engl J Med 2021;385:1091–103. https://doi.org/10.1056/nejmoa2107322.Suche in Google Scholar PubMed PubMed Central

13. Hussain, M, Qaim, SM, Spahn, I, Aslam, MN, Neumaier, B. Copper radionuclides for theranostic applications: towards standardisation of their nuclear data. A mini-review. Front Chem 2023;11:1270351. https://doi.org/10.3389/FCHEM.2023.1270351.Suche in Google Scholar

14. Krasnovskaya, OO, Abramchuck, D, Erofeev, A, Gorelkin, P, Kuznetsov, A, Shemukhin, A, et al.. Recent advances in 64Cu/67Cu-based radiopharmaceuticals. Int J Mol Sci 2023;24:9154, https://doi.org/10.3390/ijms24119154.Suche in Google Scholar PubMed PubMed Central

15. McNeil, BL, Robertson, AKH, Fu, W, Yang, H, Hoehr, C, Ramogida, CF, et al.. Production, purification, and radiolabeling of the 203Pb/212Pb theranostic pair. EJNMMI Radiopharm Chem 2021;6:1–18. https://doi.org/10.1186/s41181-021-00121-4.Suche in Google Scholar PubMed PubMed Central

16. Alghamdi, MA, Fallica, AN, Virzì, N, Kesharwani, P, Pittalà, V, Greish, K. The promise of nanotechnology in personalized medicine. J Pers Med 2022;12:673. https://doi.org/10.3390/JPM12050673.Suche in Google Scholar PubMed PubMed Central

17. Turner, JH. Recent advances in theranostics and challenges for the future. Br J Radiol 2018;91:20170893. https://doi.org/10.1259/BJR.20170893.Suche in Google Scholar PubMed PubMed Central

18. Ruiz-López, E, Calatayud-Pérez, J, Castells-Yus, I, Gimeno-Peribáñez, MJ, Mendoza-Calvo, N, Morcillo, MÁ, et al.. Diagnosis of glioblastoma by immuno-positron emission tomography. Cancers 2022;14:74, https://doi.org/10.3390/cancers14010074.Suche in Google Scholar PubMed PubMed Central

19. Shaffer, RM, Sellers, SP, Baker, MG, de Buen Kalman, R, Frostad, J, Suter, MK, et al.. Improving and expanding estimates of the global burden of disease due to environmental health risk factors. Environ Health Perspect 2019;127:105001–16. https://doi.org/10.1289/ehp5496.Suche in Google Scholar

20. Hu, LS, Wang, L, Hawkins-Daarud, A, Eschbacher, JM, Singleton, KW, Jackson, PR, et al.. Uncertainty quantification in the radiogenomics modeling of EGFR amplification in glioblastoma. Sci Rep 2021;11:3932. https://doi.org/10.1038/s41598-021-83141-z.Suche in Google Scholar PubMed PubMed Central

21. Yandrapalli, S, Puckett, Y. SPECT imaging. J Clin Neurophysiol 2022;15:273. https://doi.org/10.1097/00004691-199805000-00027.Suche in Google Scholar

22. Smith, AGG, Rowland Hill, C. Imaging assessment of acute ischaemic stroke: a review of radiological methods. Br J Radiol 2018;91:20170573. https://doi.org/10.1259/BJR.20170573.Suche in Google Scholar

23. Turner, JH. An introduction to the clinical practice of theranostics in oncology. Br J Radiol 2022;91:20180440. https://doi.org/10.1259/BJR.20180440.Suche in Google Scholar PubMed PubMed Central

24. Kuten, J, Sarid, D, Yossepowitch, O, Mabjeesh, NJ, Even-Sapir, E. [68Ga]Ga-PSMA-11 PET/CT for monitoring response to treatment in metastatic prostate cancer: is there any added value over standard follow-up? EJNMMI Res 2019;9:84. https://doi.org/10.1186/S13550-019-0554-1.Suche in Google Scholar PubMed PubMed Central

25. Kashyap, BK, Singh, VV, Solanki, MK, Kumar, A, Ruokolainen, J, Kesari, KK. Smart nanomaterials in cancer theranostics: challenges and opportunities. ACS Omega 2023;8:14290. https://doi.org/10.1021/acsomega.2c07840.Suche in Google Scholar PubMed PubMed Central

26. Choudhury, PS, Gupta, M. Theranostics in India: a particularly exquisite concept or an experimental tool. Nucl Med Mol Imaging 2019;53:92. https://doi.org/10.1007/s13139-019-00577-y.Suche in Google Scholar PubMed PubMed Central

27. Duan, H, Iagaru, A, Aparici, CM. Radiotheranostics - precision medicine in nuclear medicine and molecular imaging. Nanotheranostics 2022;6:103. https://doi.org/10.7150/ntno.64141.Suche in Google Scholar PubMed PubMed Central

28. Shah, HJ, Ruppell, E, Bokhari, R, Aland, P, Lele, VR, Ge, C, et al.. Current and upcoming radionuclide therapies in the direction of precision oncology: a narrative review. Eur J Radiol Open 2023;10:100477. https://doi.org/10.1016/j.ejro.2023.100477.Suche in Google Scholar PubMed PubMed Central

29. Simon, J. Disease diagnosis and treatment; could theranostics change everything? Med Health Care Philos 2021;24:401–8. https://doi.org/10.1007/s11019-021-10015-6.Suche in Google Scholar PubMed

30. Marin, JFG, Nunes, RF, Coutinho, AM, Zaniboni, EC, Costa, LB, Barbosa, FG, et al.. Theranostics in nuclear medicine: emerging and re-emerging integrated imaging and therapies in the era of precision oncology. Radiographics 2020;40:1715–40. https://doi.org/10.1148/rg.2020200021.Suche in Google Scholar PubMed

31. Nurhidayah, W, Setyawati, LU, Daruwati, I, Gazzali, AM, Subroto, T, Muchtaridi, M. Future prospective of radiopharmaceuticals from natural compounds using iodine radioisotopes as theranostic agents. Molecules 2022;27:8009, https://doi.org/10.3390/molecules27228009.Suche in Google Scholar PubMed PubMed Central

32. Soltanian, S, Sheikhbahaei, M, Mirtadzadini, M, Kalantari Khandani, B. Evaluation of anticancer, antioxidant and antibacterial properties of methanol extract of three Acantholimon Boiss species. Avicenna J Phytomed 2020;10:641.Suche in Google Scholar

33. Wongso, H. Natural product-based radiopharmaceuticals: focus on curcumin and its analogs, flavonoids, and marine peptides. J Pharm Anal 2022;12:380–93. https://doi.org/10.1016/j.jpha.2021.07.006.Suche in Google Scholar PubMed PubMed Central

34. Ritawidya, R, Wongso, H, Effendi, N, Pujiyanto, A, Lestari, W, Setiawan, H, et al.. Accepted manuscript (unedited) lutetium-177-labeled prostate-specific membrane antigen-617 for molecular imaging and targeted radioligand therapy of prostate cancer. Adv Pharm Bull 2023;13:701–11. https://doi.org/10.34172/apb.2023.079.Suche in Google Scholar PubMed PubMed Central

35. Ramanathan, S, Archunan, G, Sivakumar, M, Tamil Selvan, S, Fred, AL, Kumar, S, et al.. Theranostic applications of nanoparticles in neurodegenerative disorders. Int J Nanomed 2018;13:5561–76. https://doi.org/10.2147/ijn.s149022.Suche in Google Scholar

36. Thangam, R, Paulmurugan, R, Kang, H. Functionalized nanomaterials as tailored theranostic agents in brain imaging. Nanomaterials 2021;12:18. https://doi.org/10.3390/NANO12010018.Suche in Google Scholar

37. Yusuf, A, Almotairy, ARZ, Henidi, H, Alshehri, OY, Aldughaim, MS. Nanoparticles as drug delivery systems: a review of the implication of nanoparticles’ physicochemical properties on responses in biological systems. Polymers 2023;15:1596, https://doi.org/10.3390/polym15071596.Suche in Google Scholar PubMed PubMed Central

38. Pijeira, MSO, Viltres, H, Kozempel, J, Sakmár, M, Vlk, M, İlem-Özdemir, D, et al.. Radiolabeled nanomaterials for biomedical applications: radiopharmacy in the era of nanotechnology. EJNMMI Radiopharm Chem 2022;7:8. https://doi.org/10.1186/S41181-022-00161-4.Suche in Google Scholar PubMed PubMed Central

39. Poletto, G, Evangelista, L, Venturini, F, Gramegna, F, Seno, F, Moro, S, et al.. Nanoparticles and radioisotopes: a long story in a nutshell. Pharmaceutics 2022;14:2024. https://doi.org/10.3390/PHARMACEUTICS14102024.Suche in Google Scholar

40. Gawne, PJ, Man, F, Blower, PJ, T. M. de Rosales R. Direct cell radiolabeling for in vivo cell tracking with PET and SPECT imaging. Chem Rev 2022;122:10266. https://doi.org/10.1021/acs.chemrev.1c00767.Suche in Google Scholar PubMed PubMed Central

41. Ge, J, Zhang, Q, Zeng, J, Gu, Z, Gao, M. Radiolabeling nanomaterials for multimodality imaging: new insights into nuclear medicine and cancer diagnosis. Biomaterials 2020;228:119553. https://doi.org/10.1016/j.biomaterials.2019.119553.Suche in Google Scholar PubMed

42. Schirrmacher, R, Wängler, B, Bailey, J, Bernard-Gauthier, V, Schirrmacher, E, Wängler, C. Small prosthetic groups in 18F-radiochemistry: useful auxiliaries for the design of 18F-PET tracers. Semin Nucl Med 2017;47:474–92. https://doi.org/10.1053/j.semnuclmed.2017.07.001.Suche in Google Scholar PubMed

43. Eychenne, R, Chérel, M, Haddad, F, Guérard, F, Gestin, JF. Overview of the most promising radionuclides for targeted alpha therapy: the “hopeful eight”. Pharmaceutics 2021;13:906. https://doi.org/10.3390/PHARMACEUTICS13060906.Suche in Google Scholar PubMed PubMed Central

44. Farzin, L, Sheibani, S, Moassesi, ME, Shamsipur, M. An overview of nanoscale radionuclides and radiolabeled nanomaterials commonly used for nuclear molecular imaging and therapeutic functions. J Biomed Mater Res 2019;107:251–85. https://doi.org/10.1002/jbm.a.36550.Suche in Google Scholar PubMed

45. Seniwal, B, Thipe, VC, Singh, S, Fonseca, TCF, Freitas de Freitas, L. Recent advances in brachytherapy using radioactive nanoparticles: an alternative to seed-based brachytherapy. Front Oncol 2021;11:766407. https://doi.org/10.3389/FONC.2021.766407.Suche in Google Scholar

46. Drude, N, Tienken, L, Mottaghy, FM. Theranostic and nanotheranostic probes in nuclear medicine. Methods 2017;130:14–22. https://doi.org/10.1016/j.ymeth.2017.07.004.Suche in Google Scholar PubMed

47. Echavidre, W, Fagret, D, Faraggi, M, Picco, V, Montemagno, C. Recent pre-clinical advancements in nuclear medicine: pioneering the path to a limitless future. Cancers 2023;15:4839, https://doi.org/10.3390/cancers15194839.Suche in Google Scholar PubMed PubMed Central

48. Thomas, KS Theranostics: The Future is Now!. J Nucl Med Technol 2022;50:185.Suche in Google Scholar

49. Hapuarachchige, S, Artemov, D. Theranostic pretargeting drug delivery and imaging platforms in cancer precision medicine. Front Oncol 2020;10:518753. https://doi.org/10.3389/fonc.2020.01131.Suche in Google Scholar PubMed PubMed Central

50. Gupta, A, Lee, MS, Kim, JH, Lee, DS, Lee, JS. Preclinical voxel-based dosimetry in theranostics: a review. Nucl Med Mol Imaging 2020;54:86–97. https://doi.org/10.1007/s13139-020-00640-z.Suche in Google Scholar PubMed PubMed Central

51. Al-Ibraheem, A, Amman, J. Theranostics in developing countries: addressing challenges and potentials from training to practice. World J Nucl Med 2023;22:171–3. https://doi.org/10.1055/s-0043-1774733.Suche in Google Scholar PubMed PubMed Central

52. Perera, M, Morris, MJ. From concept to regulatory drug approval: lessons for theranostics. J Nucl Med 2022;63:1793–801. https://doi.org/10.2967/jnumed.121.263301.Suche in Google Scholar PubMed PubMed Central

53. Padda, IS, Nguyen, M. Radioactive iodine therapy. In: StatPearls; 2023. https://www.ncbi.nlm.nih.gov/books/NBK557741/ [Accessed 1 Aug 2023].Suche in Google Scholar

54. Coenen, HH, Ermert, J. Expanding PET-applications in life sciences with positron-emitters beyond fluorine-18. Nucl Med Biol 2021;92:241–69. https://doi.org/10.1016/j.nucmedbio.2020.07.003.Suche in Google Scholar PubMed

55. De la Vieja, A, Riesco-Eizaguirre, G. Radio-iodide treatment: from molecular aspects to the clinical view. Cancers 2021;13:995. https://doi.org/10.3390/cancers13050995.Suche in Google Scholar PubMed PubMed Central

56. Lee, K, Anastasopoulou, C, Chandran, C. Thyroid cancer. In: StatPearls; 2023. https://www.ncbi.nlm.nih.gov/books/NBK459299/ [Accessed 13 Aug 2023].Suche in Google Scholar

57. Kane, EG, Shore, SL. Thyroidectomy. Surgery 2022;38:801–6. https://doi.org/10.1016/j.mpsur.2020.10.006.Suche in Google Scholar

58. Signore, A, Lauri, C, Di Paolo, A, Stati, V, Santolamazza, G, Capriotti, G, et al.. Predictive role of serum thyroglobulin after surgery and before radioactive iodine therapy in patients with thyroid carcinoma. Cancers 2023;15:2976. https://doi.org/10.3390/CANCERS15112976/S1.Suche in Google Scholar

59. Hong, CM, Ahn, BC. Factors associated with dose determination of radioactive iodine therapy for differentiated thyroid cancer. Nucl Med Mol Imaging 2018;52:247. https://doi.org/10.1007/s13139-018-0522-0.Suche in Google Scholar PubMed PubMed Central

60. Filippi, L, Chiaravalloti, A, Schillaci, O, Cianni, R, Bagni, O. Theranostic approaches in nuclear medicine: current status and future prospects. Expert Rev Med Devices 2020;17:331–43. https://doi.org/10.1080/1743444020201741348.Suche in Google Scholar

61. Danieli, R, Milano, A, Gallo, S, Veronese, I, Lascialfari, A, Indovina, L, et al.. Personalized dosimetry in targeted radiation therapy: a look to methods, tools and critical aspects. J Pers Med 2022;12:205. https://doi.org/10.3390/jpm12020205.Suche in Google Scholar PubMed PubMed Central

62. Pacilio, M, Conte, M, Frantellizzi, V, De Feo, MS, Pisani, AR, Marongiu, A, et al.. Personalized dosimetry in the context of radioiodine therapy for differentiated thyroid cancer. Diagnostics 2022;12:1763. https://doi.org/10.3390/diagnostics12071763.Suche in Google Scholar PubMed PubMed Central

63. Gupta, A, Lee, MS, Kim, JH, Park, S, Park, HS, Kim, SE, et al.. Preclinical voxel-based dosimetry through GATE Monte Carlo simulation using PET/CT imaging of mice. Phys Med Biol 2019;64:095007. https://doi.org/10.1088/1361-6560/AB134B.Suche in Google Scholar PubMed

64. Klubo-Gwiezdzinska, J, Van Nostrand, D, Atkins, F, Burman, K, Jonklaas, J, Mete, M, et al.. Efficacy of dosimetric versus empiric prescribed activity of 131I for therapy of differentiated thyroid cancer. J Clin Endocrinol Metab 2011;96:3217. https://doi.org/10.1210/jc.2011-0494.Suche in Google Scholar PubMed PubMed Central

65. Mazzaglia, S, Stella, G, Tonghi, LB, Tuvé, CN, Politi, G, Pellegriti, G, et al.. Absorbed dose evaluation in radioiodine therapy with different approaches. Instruments 2019;3:39, https://doi.org/10.3390/instruments3030039.Suche in Google Scholar

66. Deandreis, D, Roussy, G. Reply: fixed 3.7-GBq 131I activity for metastatic thyroid cancer therapy ignores science and history. J Nucl Med 2017;58:1531. https://doi.org/10.2967/jnumed.117.193185.Suche in Google Scholar PubMed

67. Johnsen, JI, Dyberg, C, Wickström, M. Neuroblastoma-A neural crest derived embryonal malignancy. Front Mol Neurosci 2019;12:9. https://doi.org/10.3389/FNMOL.2019.00009.Suche in Google Scholar

68. Kholodenko, IV, Kalinovsky, DV, Doronin, II, Deyev, SM, Kholodenko, RV. Neuroblastoma origin and therapeutic targets for immunotherapy. J Immunol Res 2018;2018:7394268. https://doi.org/10.1155/2018/7394268.Suche in Google Scholar PubMed PubMed Central

69. Maris, JM. The biologic basis for neuroblastoma heterogeneity and risk stratification. Curr Opin Pediatr 2005;17:7–13. https://doi.org/10.1097/01.mop.0000150631.60571.89.Suche in Google Scholar PubMed

70. Wieland, DM, Brown, LE, Tobes, MC, Rogers, WL, Marsh, DD, Mangner, TJ, et al.. Imaging the primate adrenal medulla with [123I] and [131I] meta-iodobenzylguanidine: concise communication. J Nucl Med 1981;22:358–64.Suche in Google Scholar

71. Agrawal, A, Rangarajan, V, Shah, S, Puranik, A, Purandare, N. MIBG (metaiodobenzylguanidine) theranostics in pediatric and adult malignancies. Br J Radiol 2018;91:20180103. https://doi.org/10.1259/BJR.20180103.Suche in Google Scholar

72. Kimmig, B, Brandeis, WE, Eisenhut, M, Bubeck, B, Hermann, HJ, zum Winkel, K Scintigraphy of a neuroblastoma with I-131 meta-iodobenzylguanidine. J Nucl Med 1984;25:773–5.Suche in Google Scholar

73. Ady, N, Zucker, JM, Asselain, B, Edeline, V, Bonnin, F, Michon, J, et al.. A new 123I-MIBG whole body scan scoring method--application to the prediction of the response of metastases to induction chemotherapy in stage IV neuroblastoma. Eur J Cancer 1995;31A:256–61. https://doi.org/10.1016/0959-8049(94)00509-4.Suche in Google Scholar PubMed

74. Panoff, J, Lucas, J, Pater, L, Gajjar, S. Neuroblastoma. In: Merchant, T, Kortmann, RD, editors. Pediatric radiation oncology. Pediatric oncology. Cham: Springer; 2018:87–110 pp.10.1007/978-3-319-43545-9_5Suche in Google Scholar

75. Prado-Wohlwend, S, del Olmo-García, MI, Bello-Arques, P, Merino-Torres, JF. [177Lu]Lu-DOTA-TATE and [131I]MIBG phenotypic imaging-based therapy in metastatic/inoperable pheochromocytomas and paragangliomas: comparative results in a single center. Front Endocrinol 2022;13:1. https://doi.org/10.3389/fendo.2022.778322.Suche in Google Scholar PubMed PubMed Central

76. Filippi, L, Frantellizzi, V, Magdi, M, Gorica, J, Scippa, S, Chiaravalloti, A, et al.. Radiotheranostic agents targeting neuroblastoma: state-of-the-art and emerging perspectives. Onco 2021;1:123–39, https://doi.org/10.3390/onco1020011.Suche in Google Scholar

77. Jimenez, C, Erwin, W, Chasen, B. Targeted radionuclide therapy for patients with metastatic pheochromocytoma and paraganglioma: from low-specific-activity to high-specific-activity iodine-131 metaiodobenzylguanidine. Cancers 2019;11:1018. https://doi.org/10.3390/CANCERS11071018.Suche in Google Scholar

78. Kayano, D, Kinuya, S. Current consensus on I-131 MIBG therapy. Nucl Med Mol Imaging 2018;52:254. https://doi.org/10.1007/s13139-018-0523-z.Suche in Google Scholar PubMed PubMed Central

79. Howard, JP, Maris, JM, Kersun, LS, Huberty, JP, Cheng, S, Hawkins, RA, et al.. Tumor response and toxicity with multiple infusions of high dose 131I-MIBG for refractory neuroblastoma. Pediatr Blood Cancer 2005;44:232–9. https://doi.org/10.1002/pbc.20240.Suche in Google Scholar PubMed

80. Monsieurs, M, Brans, B, Bacher, K, Dierckx, R, Thierens, H. Patient dosimetry for 131I-MIBG therapy for neuroendocrine tumours based on 123I-MIBG scans. Eur J Nucl Med Mol Imaging 2002;29:1581–7. https://doi.org/10.1007/s00259-002-0973-4.Suche in Google Scholar PubMed

81. Mbese, Z, Aderibigbe, BA. Bisphosphonate-based conjugates and derivatives as potential therapeutic agents in osteoporosis, bone cancer and metastatic bone cancer. Int J Mol Sci 2021;22:6869. https://doi.org/10.3390/IJMS22136869.Suche in Google Scholar

82. Manafi-Farid, R, Masoumi, F, Divband, G, Saidi, B, Ataeinia, B, Hertel, F, et al.. Targeted palliative radionuclide therapy for metastatic bone pain. J Clin Med 2020;9:1–24. https://doi.org/10.3390/jcm9082622.Suche in Google Scholar PubMed PubMed Central

83. Yadav, MP, Ballal, S, Meckel, M, Roesch, F, Bal, C. [177Lu]Lu-DOTA-ZOL bone pain palliation in patients with skeletal metastases from various cancers: efficacy and safety results. EJNMMI Res 2020;10:130. https://doi.org/10.1186/S13550-020-00709-Y.Suche in Google Scholar PubMed PubMed Central

84. Pfannkuchen, N, Meckel, M, Bergmann, R, Bachmann, M, Bal, C, Sathekge, M, et al.. Novel radiolabeled bisphosphonates for PET diagnosis and endoradiotherapy of bone metastases. Pharmaceuticals 2017;10:45. https://doi.org/10.3390/ph10020045.Suche in Google Scholar PubMed PubMed Central

85. Fischer, M, Kampen, WU. Radionuclide therapy of bone metastases. Breast Care 2012;7:100–7. https://doi.org/10.1159/000337634.Suche in Google Scholar PubMed PubMed Central

86. Lange, R, ter Heine, R, Knapp, RFF, Bloemendal, HJ, Hendrikse, NH. Pharmaceutical and clinical development of phosphonate-based radiopharmaceuticals for the targeted treatment of bone metastases. Bone 2016;91:159–79. https://doi.org/10.1016/j.bone.2016.08.002.Suche in Google Scholar PubMed

87. Kleynhans, J, Duatti, A, Bolzati, C. Fundamentals of rhenium-188 radiopharmaceutical chemistry. Molecules 2023;28:1487, https://doi.org/10.3390/molecules28031487.Suche in Google Scholar PubMed PubMed Central

88. Ogawa, K, Washiyama, K. Bone target radiotracers for palliative therapy of bone metastases. Curr Med Chem 2012;19:3290–300. https://doi.org/10.2174/092986712801215865.Suche in Google Scholar PubMed

89. Raphael, MJ, Chan, DL, Law, C, Singh, S. Principles of diagnosis and management of neuroendocrine tumours. Can Med Assoc J 2017;189:E398. https://doi.org/10.1503/cmaj.160771.Suche in Google Scholar PubMed PubMed Central

90. Rossi, RE, Massironi, S. The increasing incidence of neuroendocrine neoplasms worldwide: current knowledge and open issues. J Clin Med 2022;11:3794. https://doi.org/10.3390/jcm11133794.Suche in Google Scholar PubMed PubMed Central

91. Wang, R, Zheng-Pywell, R, Chen, HA, Bibb, JA, Rose, JB. Management of gastrointestinal neuroendocrine tumors. Clin Med Insights Endocrinol Diabetes 2019;12:1179551419884058. https://doi.org/10.1177/1179551419884058.Suche in Google Scholar PubMed PubMed Central

92. Yin, F, Wu, ZH, Lai, JP. New insights in diagnosis and treatment of gastroenteropancreatic neuroendocrine neoplasms. World J Gastroenterol 2022;28:1751. https://doi.org/10.3748/wjg.v28.i17.1751.Suche in Google Scholar PubMed PubMed Central

93. Pencharz, D, GnanaseGaran, G, Navalkissoor, S. Theranostics in neuroendocrine tumours: somatostatin receptor imaging and therapy. Br J Radiol 2018;91:20180108. https://doi.org/10.1259/BJR.20180108.Suche in Google Scholar

94. Eychenne, R, Bouvry, C, Bourgeois, M, Loyer, P, Benoist, E, Lepareur, N. Overview of radiolabeled somatostatin analogs for cancer imaging and therapy. Molecules 2020;25:4012. https://doi.org/10.3390/MOLECULES25174012.Suche in Google Scholar PubMed PubMed Central

95. Laudicella, R, Albano, D, Annunziata, S, Calabrò, D, Argiroffi, G, Abenavoli, E, et al.. Theragnostic use of radiolabelled dota-peptides in meningioma: from clinical demand to future applications. Cancers 2019;11:1412. https://doi.org/10.3390/cancers11101412.Suche in Google Scholar PubMed PubMed Central

96. Krenning, EP, Kwekkeboom, DJ, Bakker, WH, Breeman, WAP, Kooij, PPM, Oei, HY, et al.. Somatostatin receptor scintigraphy with [111In-DTPA-D-Phe1]- and [123I-Tyr3]-octreotide: the Rotterdam experience with more than 1000 patients. Eur J Nucl Med 1993;20:716–31. https://doi.org/10.1007/bf00181765.Suche in Google Scholar PubMed

97. Li, X, Cai, H, Wu, X, Li, L, Tian, R. New frontiers in molecular imaging using peptide-based radiopharmaceuticals for prostate cancer. Front Chem 2020;8:583309. https://doi.org/10.3389/fchem.2020.583309.Suche in Google Scholar PubMed PubMed Central

98. Sharma, P, Singh, H, Bal, C, Kumar, C. PET/CT imaging of neuroendocrine tumors with 68Gallium-labeled somatostatin analogues: an overview and single institutional experience from India. Indian J Nucl Med 2014;29:2. https://doi.org/10.4103/0972-3919.125760.Suche in Google Scholar PubMed PubMed Central

99. Hope, TA, Bergsland, EK, Bozkurt, MF, Graham, M, Heaney, AP, Herrmann, K, et al.. Appropriate use criteria for somatostatin receptor PET imaging in neuroendocrine tumors. J Nucl Med 2018;59:66. https://doi.org/10.2967/jnumed.117.202275.Suche in Google Scholar PubMed PubMed Central

100. Adnan, A, Basu, S. Somatostatin receptor targeted PET-CT and its role in the management and theranostics of gastroenteropancreatic neuroendocrine neoplasms. Diagnostics 2023;13:2154. https://doi.org/10.3390/diagnostics13132154.Suche in Google Scholar PubMed PubMed Central

101. Parihar, AS, Chopra, S, Prasad, V. Nephrotoxicity after radionuclide therapies. Transl Oncol 2022;15:101295. https://doi.org/10.1016/j.tranon.2021.101295.Suche in Google Scholar PubMed PubMed Central

102. Das, S, Al-Toubah, T, El-Haddad, G, Strosberg, J. 177Lu-DOTATATE for the treatment of gastroenteropancreatic neuroendocrine tumors. Expert Rev Gastroenterol Hepatol 2019;13:1023. https://doi.org/10.1080/17474124.2019.1685381.Suche in Google Scholar PubMed PubMed Central

103. Nölting, S, Bechmann, N, Taieb, D, Beuschlein, F, Fassnacht, M, Kroiss, M, et al.. Personalized management of pheochromocytoma and paraganglioma. Endocr Rev 2022;43:199. https://doi.org/10.1210/endrev/bnab019.Suche in Google Scholar PubMed PubMed Central

104. Li, M, Prodanov, T, Meuter, L, Kerstens, MN, Bechmann, N, Prejbisz, A, et al.. Recurrent disease in patients with sporadic pheochromocytoma and paraganglioma. J Clin Endocrinol Metab 2023;108:397–404. https://doi.org/10.1210/clinem/dgac563.Suche in Google Scholar PubMed PubMed Central

105. Bidakhvidi, NA, Goffin, K, Dekervel, J, Baete, K, Nackaerts, K, Clement, P, et al.. Peptide receptor radionuclide therapy targeting the somatostatin receptor: basic principles, clinical applications and optimization strategies. Cancers 2022;14:129.10.3390/cancers14010129Suche in Google Scholar PubMed PubMed Central

106. Sharma, N, Naraev, BG, Engelman, EG, Zimmerman, MB, Bushnell, DL, O’Dorisio, TM, et al.. Peptide receptor radionuclide therapy (PRRT) outcomes in a North American cohort with metastatic well-differentiated neuroendocrine tumors. Pancreas 2017;46:151. https://doi.org/10.1097/mpa.0000000000000734.Suche in Google Scholar

107. Kong, G, Grozinsky-Glasberg, S, Hofman, MS, Callahan, J, Meirovitz, A, Maimon, O, et al.. Efficacy of peptide receptor radionuclide therapy for functional metastatic paraganglioma and pheochromocytoma. J Clin Endocrinol Metab 2017;102:3278–87. https://doi.org/10.1210/jc.2017-00816.Suche in Google Scholar PubMed

108. Demirci, E, Kabasakal, L, Toklu, T, Ocak, M, Şahin, OE, Alan-Selcuk, N, et al.. 177Lu-DOTATATE therapy in patients with neuroendocrine tumours including high-grade (WHO G3) neuroendocrine tumours: response to treatment and long-term survival update. Nucl Med Commun 2018;39:789–96. https://doi.org/10.1097/mnm.0000000000000874.Suche in Google Scholar PubMed

109. Rindi, G. The ENETS guidelines: the new TNM classification system. Tumori 2010;96:806–9. https://doi.org/10.1177/030089161009600532.Suche in Google Scholar PubMed

110. Strosberg, J, El-Haddad, G, Wolin, E, Hendifar, A, Yao, J, Chasen, B, et al.. Phase 3 trial of 177Lu-dotatate for midgut neuroendocrine tumors. N Engl J Med 2017;376:125–35. https://doi.org/10.1056/nejmoa1607427.Suche in Google Scholar

111. Shende, P, Gandhi, S. Current strategies of radiopharmaceuticals in theranostic applications. J Drug Deliv Sci Technol 2021;64:102594. https://doi.org/10.1016/j.jddst.2021.102594.Suche in Google Scholar

112. Dong, L, Zieren, RC, Xue, W, de Reijke, TM, Pienta, KJ. Metastatic prostate cancer remains incurable, why? Asian J Urol 2019;6:26–41. https://doi.org/10.1016/j.ajur.2018.11.005.Suche in Google Scholar PubMed PubMed Central

113. Chandrasekar, T, Yang, JC, Gao, AC, Evans, CP. Mechanisms of resistance in castration-resistant prostate cancer (CRPC). Transl Androl Urol 2015;4:365. https://doi.org/10.3978/j.issn.2223-4683.2015.05.02.Suche in Google Scholar PubMed PubMed Central

114. Balk, SP, Ko, Y-J, Bubley, GJ. Biology of neoplasia biology of prostate-specific antigen. J Clin Oncol 2003;21:383–91. https://doi.org/10.1200/JCO.2003.02.083.Suche in Google Scholar PubMed

115. Lilja, H, Ulmert, D, Vickers, AJ. Prostate-specific antigen and prostate cancer: prediction, detection and monitoring. Nat Rev Cancer 2008 8:268–78, https://doi.org/10.1038/nrc2351.Suche in Google Scholar PubMed

116. Kaewput, C, Vinjamuri, S. Update of PSMA theranostics in prostate cancer: current applications and future trends. J Clin Med 2022;11:2738, https://doi.org/10.3390/jcm11102738.Suche in Google Scholar PubMed PubMed Central

117. Hope, TA, Afshar-Oromieh, A, Eiber, M, Emmett, L, Fendler, WP, Lawhn-Heath, C, et al.. Imaging prostate cancer with PSMA PET/CT and PET/MRI: current and future applications. AJR Am J Roentgenol 2018;211:286. https://doi.org/10.2214/ajr.18.19957.Suche in Google Scholar PubMed PubMed Central

118. Manyak, MJ. Indium-111 capromab pendetide in the management of recurrent prostate cancer. 2014; 8: 175–81. https://doi.org/10.1586/1473714082175.Suche in Google Scholar

119. Rizvi, T, Deng, C, Rehm, PK. Indium-111 capromab pendetide (ProstaScint®) demonstrates renal cell carcinoma and aortocaval nodal metastases from prostate adenocarcinoma. World J Nucl Med 2015;14:209. https://doi.org/10.4103/1450-1147.163259.Suche in Google Scholar PubMed PubMed Central

120. Trevethan, R. Sensitivity, specificity, and predictive values: foundations, pliabilities, and pitfalls in research and practice. Front Public Health 2017;5:308890. https://doi.org/10.3389/fpubh.2017.00307.Suche in Google Scholar PubMed PubMed Central

121. Hennrich, U, Eder, M. [68Ga]Ga-PSMA-11: the first FDA-approved 68Ga-radiopharmaceutical for PET imaging of prostate cancer. Pharmaceuticals 2021;14:713, https://doi.org/10.3390/ph14080713.Suche in Google Scholar PubMed PubMed Central

122. Lenzo, NP, Meyrick, D, Turner, JH. Review of Gallium-68 PSMA PET/CT imaging in the management of prostate cancer. Diagnostics 2018;8:16. https://doi.org/10.3390/diagnostics8010016.Suche in Google Scholar PubMed PubMed Central

123. Roach, PJ, Francis, R, Emmett, L, Hsiao, E, Kneebone, A, Hruby, G, et al.. The impact of 68Ga-PSMA PET/CT on management intent in prostate cancer: results of an Australian prospective multicenter study. J Nucl Med 2018;59:82–8. https://doi.org/10.2967/jnumed.117.197160.Suche in Google Scholar PubMed

124. Juzeniene, A, Stenberg, VY, Bruland, ØS, Larsen, RH. Preclinical and clinical status of PSMA-targeted alpha therapy for metastatic castration-resistant prostate cancer. Cancers 2021;13:779, https://doi.org/10.3390/cancers13040779.Suche in Google Scholar PubMed PubMed Central

125. Deshayes, E, Roumiguie, M, Thibault, C, Beuzeboc, P, Cachin, F, Hennequin, C, et al.. Radium 223 dichloride for prostate cancer treatment. Drug Des Devel Ther 2017;11:2643–51. https://doi.org/10.2147/dddt.s122417.Suche in Google Scholar PubMed PubMed Central

126. Fallah, J, Agrawal, S, Gittleman, H, Fiero, MH, Subramaniam, S, John, C, et al.. FDA approval summary: lutetium Lu 177 vipivotide tetraxetan for patients with metastatic castration-resistant prostate cancer. Clin Cancer Res 2023;29:1651–7. https://doi.org/10.1158/1078-0432.ccr-22-2875.Suche in Google Scholar

127. Ritawidya, R, Wongso, H, Effendi, N, Pujiyanto, A, Lestari, W, Setiawan, H, et al.. Lutetium-177-labeled prostate-specific membrane antigen-617 for molecular imaging and targeted radioligand therapy of prostate cancer. Adv Pharm Bull 2023;13:701–11. https://doi.org/10.34172/apb.2023.079.Suche in Google Scholar PubMed PubMed Central

128. Ladrière, T, Faudemer, J, Levigoureux, E, Peyronnet, D, Desmonts, C, Vigne, J. Safety and therapeutic optimization of lutetium-177 based radiopharmaceuticals. Pharmaceutics 2023;15:1240, https://doi.org/10.3390/pharmaceutics15041240.Suche in Google Scholar PubMed PubMed Central

129. Ramnaraign, B, Sartor, O. PSMA-targeted radiopharmaceuticals in prostate cancer: current data and new trials. Oncol 2023;28:392–401. https://doi.org/10.1093/oncolo/oyac279.Suche in Google Scholar PubMed PubMed Central

130. Jang, A, Kendi, AT, Sartor, O. Status of PSMA-targeted radioligand therapy in prostate cancer: current data and future trials. Ther Adv Med Oncol 2023;15:17588359231157632. https://doi.org/10.1177/17588359231157632.Suche in Google Scholar PubMed PubMed Central

131. Heistein, JB, Acharya, U, Mukkamalla, SKR. Malignant melanoma. In: StatPearls; 2023. https://www.ncbi.nlm.nih.gov/books/NBK470409/ [Accessed 13 Aug 2023].Suche in Google Scholar

132. Knight, A, Karapetyan, L, Kirkwood, JM. Immunotherapy in melanoma: recent advances and future directions. Cancers (Basel) 2023;15:1106.10.3390/cancers15041106Suche in Google Scholar PubMed PubMed Central

133. Rouanet, J, Quintana, M, Auzeloux, P, Cachin, F, Degoul, F. Benzamide derivative radiotracers targeting melanin for melanoma imaging and therapy: preclinical/clinical development and combination with other treatments. Pharmacol Ther 2021;224:107829. https://doi.org/10.1016/j.pharmthera.2021.107829.Suche in Google Scholar PubMed

134. Rbah-Vidal, L, Vidal, A, Billaud, EMF, Besse, S, Ranchon-Cole, I, Mishellany, F, et al.. Theranostic approach for metastatic pigmented melanoma using ICF15002, a multimodal radiotracer for both PET imaging and targeted radionuclide therapy. Neoplasia 2017;19:17–27. https://doi.org/10.1016/j.neo.2016.11.001.Suche in Google Scholar PubMed PubMed Central

135. Wiriyasermkul, P, Moriyama, S, Nagamori, S. Membrane transport proteins in melanosomes: regulation of ions for pigmentation. Biochim Biophys Acta Biomembr 2020;1862:183318. https://doi.org/10.1016/j.bbamem.2020.183318.Suche in Google Scholar PubMed PubMed Central

136. Thivat, E, Rouanet, J, Auzeloux, P, Sas, N, Jouberton, E, Levesque, S, et al.. Phase I study of [131I] ICF01012, a targeted radionuclide therapy, in metastatic melanoma: MELRIV-1 protocol. BMC Cancer 2022;22:417. https://doi.org/10.1186/S12885-022-09495-3.Suche in Google Scholar

137. Gnesin, S, Müller, J, Burger, IA, Meisel, A, Siano, M, Früh, M, et al.. Radiation dosimetry of 18F-AzaFol: a first in-human use of a folate receptor PET tracer. EJNMMI Res 2020;10:32. https://doi.org/10.1186/S13550-020-00624-2.Suche in Google Scholar PubMed PubMed Central

138. Allen, KJH, Malo, ME, Jiao, R, Dadachova, E. Targeting melanin in melanoma with radionuclide therapy. Int J Mol Sci 2022;23:9520. https://doi.org/10.3390/IJMS23179520.Suche in Google Scholar

139. Joo, I, Kim, HC, Kim, GM, Paeng, JC. Imaging evaluation following 90Y radioembolization of liver tumors: what radiologists should know. Korean J Radiol 2018;19:209. https://doi.org/10.3348/kjr.2018.19.2.209.Suche in Google Scholar PubMed PubMed Central

140. Weber, M, Lam, M, Chiesa, C, Konijnenberg, M, Cremonesi, M, Flamen, P, et al.. EANM procedure guideline for the treatment of liver cancer and liver metastases with intra-arterial radioactive compounds. Eur J Nucl Med Mol Imaging 2022;49:1682. https://doi.org/10.1007/s00259-021-05600-z.Suche in Google Scholar PubMed PubMed Central

141. Spina, JC, Hume, I, Pelaez, A, Peralta, O, Quadrelli, M, Garcia Monaco, R. Expected and unexpected imaging findings after 90 Y transarterial radioembolization for liver tumors. Radiographics 2019;39:578–95. https://doi.org/10.1148/rg.2019180095.Suche in Google Scholar PubMed

142. D’abadie, P, Hesse, M, Louppe, A, Lhommel, R, Walrand, S, Jamar, F. Microspheres used in liver radioembolization: from conception to clinical effects. Molecules 2021;26:3966. https://doi.org/10.3390/MOLECULES26133966.Suche in Google Scholar PubMed PubMed Central

143. Hunt, AP, Frier, M, Johnson, RA, Berezenko, S, Perkins, A. Preparation of Tc-99m-macroaggregated albumin from recombinant human albumin for lung perfusion imaging. Eur J Pharm Biopharm 2006;62:26–31. https://doi.org/10.1016/j.ejpb.2005.06.005.Suche in Google Scholar PubMed

144. Commander, CW, Mauro, DM. Seminars in radioembolization: current approach to planning angiography and MAA administration. Semin Intervent Radiol 2021;38:397. https://doi.org/10.1055/s-0041-1735616.Suche in Google Scholar PubMed PubMed Central

145. Pichard, A, Marcatili, S, Karam, J, Constanzo, J, Ladjohounlou, R, Courteau, A, et al.. The therapeutic effectiveness of 177Lu-lilotomab in B-cell non-Hodgkin lymphoma involves modulation of G2/M cell cycle arrest. Leukemia 2019 34:1315–28, https://doi.org/10.1038/s41375-019-0677-4.Suche in Google Scholar PubMed PubMed Central

146. Krishnan, AY, Palmer, J, Nademanee, AP, Chen, R, Popplewell, LL, Tsai, NC, et al.. Phase II study of yttrium-90 ibritumomab tiuxetan plus high-dose BCNU, etoposide, cytarabine, and melphalan for non-Hodgkin lymphoma: the role of histology. Biol Blood Marrow Transplant 2017 23:922–29. https://doi.org/10.1016/j.bbmt.2017.03.004.Suche in Google Scholar PubMed PubMed Central

147. Parakh, S, Lee, ST, Gan, HK, Scott, AM. Radiolabeled antibodies for cancer imaging and therapy. Cancers (Basel) 2022;14:1454. https://doi.org/10.3390/cancers14061454.Suche in Google Scholar PubMed PubMed Central

148. Goldsmith, SJ. Targeted radionuclide therapy: a historical and personal review. Semin Nucl Med 2020;50:87–97. https://doi.org/10.1053/j.semnuclmed.2019.07.006.Suche in Google Scholar PubMed

149. Kameswaran, M, Pandey, U, Gamre, N, Shinto, A, Subramanian, S, Sarma, HD, et al.. Ready-to-use 177Lu-Rituximab injection for non-Hodgkin’s Lymphoma: formulation and preliminary clinical study. J Radioanal Nucl Chem 2018;318:849–56. https://doi.org/10.1007/s10967-018-6042-7.Suche in Google Scholar

150. Malenge, MM, Patzke, S, Ree, AH, Stokke, T, Ceuppens, P, Middleton, B, et al.. 177Lu-Lilotomab satetraxetan has the potential to counteract resistance to rituximab in non-Hodgkin lymphoma. J Nucl Med 2020;61:1468. https://doi.org/10.2967/jnumed.119.237230.Suche in Google Scholar PubMed PubMed Central

151. FAPI PET for lung fibrosis – full text view – ClinicalTrials.gov, https://classic.clinicaltrials.gov/ct2/show/NCT05365802 [Accessed 26 Aug 2023].Suche in Google Scholar

152. 68Ga-pentixather and 68Ga-pentixafor PET/CT in multiple myeloma – full text view – ClinicalTrials.gov, https://classic.clinicaltrials.gov/ct2/show/NCT05364177 [Accessed 26 Aug 2023].Suche in Google Scholar

153. First-in-human study of the theranostic pair [68Ga]Ga DOTA-5G and [177Lu]Lu DOTA-ABM-5G in pancreatic cancer – full text view – ClinicalTrials.gov, https://classic.clinicaltrials.gov/ct2/show/NCT04665947 [Accessed 26 Aug 2023].Suche in Google Scholar

154. HER2 expression detection and radionuclide therapy in breast cancer using 99mTc/188Re labeled single domain antibody – full text view – ClinicalTrials.gov, https://classic.clinicaltrials.gov/ct2/show/NCT04674722 [Accessed 26 Aug 2023].Suche in Google Scholar

155. Theranostics in soft tissue sarcoma using a vascular disruption approach – full text view – ClinicalTrials.gov, https://classic.clinicaltrials.gov/ct2/show/NCT05420727 [Accessed 26 Aug 2023].Suche in Google Scholar

156. PET imaging study of 89Zr-DFO-YS5 – full text view – ClinicalTrials.gov, https://classic.clinicaltrials.gov/ct2/show/NCT05245006 [Accessed 26 Aug 2023].Suche in Google Scholar

157. Pilot trial to assess 68Ga bombesin PET/CT (NeoB) imaging for staging of breast cancer – full text view – ClinicalTrials.gov, https://classic.clinicaltrials.gov/ct2/show/NCT05889728 [Accessed 26 Aug 2023].Suche in Google Scholar

158. A study of 177Lu-FAP-2286 in advanced solid tumors (LuMIERE) – full text view – ClinicalTrials.gov, https://classic.clinicaltrials.gov/ct2/show/NCT04939610 [Accessed 26 Aug 2023].Suche in Google Scholar

159. External beam therapy with theranostic radioligand therapy for oligometastatic prostate cancer (ProstACT TARGET) - full text view – ClinicalTrials.gov, https://classic.clinicaltrials.gov/ct2/show/NCT05146973 [Accessed 26 Aug 2023].Suche in Google Scholar

160. 64Cu-SAR-bisPSMA and 67Cu-SAR-bisPSMA for identification and treatment of PSMA-expressing metastatic castrate resistant prostate cancer (SECuRE) – full text view – ClinicalTrials.gov, https://classic.clinicaltrials.gov/ct2/show/NCT04868604?term=NCT04868604&draw=2&rank=1 [Accessed 26 Aug 2023].Suche in Google Scholar

161. 67Cu-SARTATETM peptide receptor radionuclide therapy administered to pediatric patients with high-risk, relapsed, refractory neuroblastoma – full text view – ClinicalTrials.gov, https://classic.clinicaltrials.gov/ct2/show/NCT04023331 [Accessed 26 Aug 2023].Suche in Google Scholar

162. 64Cu-SAR-BBN and 67CU SAR-BBN for identification and treatment of gastrin releasing peptide receptor (GRPR)-Expressing metastatic castrate resistant prostate cancer in patients who are ineligible for therapy with 177Lu-PSMA-617 (COMBAT) – full text view – ClinicalTrials.gov, https://classic.clinicaltrials.gov/ct2/show/NCT05633160 [Accessed 26 Aug 2023].Suche in Google Scholar

163. LS301-IT in partial mastectomy and sentinel lymph node biopsy (SLNB) for DCIS or stage I-II primary invasive breast cancer – full text view – ClinicalTrials.gov, https://classic.clinicaltrials.gov/ct2/show/NCT05900986 [Accessed 26 Aug 2023].Suche in Google Scholar

164. MC1R-targeted alpha-particle therapy trial in adults with advanced melanoma – full text view – ClinicalTrials.gov, https://classic.clinicaltrials.gov/ct2/show/NCT05655312 [Accessed 26 Aug 2023].Suche in Google Scholar

165. Dual-Tracer theranostic PET – full text view – ClinicalTrials.gov, https://classic.clinicaltrials.gov/ct2/show/NCT05680675 [Accessed 26 Aug 2023].Suche in Google Scholar

166. Study record | ClinicalTrials.gov, https://clinicaltrials.gov/study/NCT05798273 [Accessed 27 Aug 2023].Suche in Google Scholar

167. PSMA expression and PSMA PET imaging in soft tissue sarcomas and urothelial cell carcinomas – full text view – ClinicalTrials.gov, https://classic.clinicaltrials.gov/ct2/show/NCT05522257 [Accessed 26 Aug 2023].Suche in Google Scholar

168. PSMA in gastrointestinal tumors (GIPSMA, focusing on hepatocellular carcinoma) – full text view – ClinicalTrials.gov, https://classic.clinicaltrials.gov/ct2/show/NCT05547919 [Accessed 26 Aug 2023].Suche in Google Scholar

169. Wang, JH, Kiess, AP. PSMA-targeted therapy for non-prostate cancers. Front Oncol 2023;13:1220586. https://doi.org/10.3389/fonc.2023.1220586.Suche in Google Scholar PubMed PubMed Central

170. ProsTIC Registry of men treated with PSMA theranostics – full text view – ClinicalTrials.gov, https://classic.clinicaltrials.gov/ct2/show/NCT04769817 [Accessed 26 Aug 2023].Suche in Google Scholar

171. Radiolabelled CCK-2/Gastrin receptor analogue for personalized theranostic strategy in advanced MTC – full text view – ClinicalTrials.gov, https://classic.clinicaltrials.gov/ct2/show/NCT03246659 [Accessed 27 Aug 2023].Suche in Google Scholar

172. A trial of 177Lu-PSMA617 theranostic versus cabazitaxel in progressive metastatic castration resistant prostate cancer – full text view – ClinicalTrials.gov, https://classic.clinicaltrials.gov/ct2/show/NCT03392428 [Accessed 27 Aug 2023].Suche in Google Scholar

173. Peptide receptor radionuclide therapy administered to participants with meningioma with 67Cu-SARTATETM – full text view – ClinicalTrials.gov, https://classic.clinicaltrials.gov/ct2/show/NCT03936426 [Accessed 27 August 2023].Suche in Google Scholar

174. [68Ga]. DOTATATE-PET/MRI in hepatocellular carcinoma – full text view – ClinicalTrials.gov. https://classic.clinicaltrials.gov/ct2/show/NCT03648073 [Accessed 27 Aug 2023].Suche in Google Scholar

175. Theranostics of Radiolabeled Somatostatin Antagonists 68Ga-DOTA-JR11. 177Lu-DOTA-JR11 in patients with neuroendocrine tumors – full text view – ClinicalTrials.gov. https://classic.clinicaltrials.gov/ct2/show/NCT02609737 [Accessed 27 Aug 2023].Suche in Google Scholar

176. Molecular and whole-body MR imaging in lymphomas – full text view – ClinicalTrials.gov, https://classic.clinicaltrials.gov/ct2/show/NCT02389101 [Accessed 27 Aug 2023].Suche in Google Scholar

177. 18F-DCFPyL PET/CT in high-grade epithelial ovarian cancer (PET HOC) – full text view – ClinicalTrials.gov, https://classic.clinicaltrials.gov/ct2/show/NCT03811899 [Accessed 27 Aug 2023].Suche in Google Scholar

178. Imageguided theranostics in multiple myeloma – full text view – ClinicalTrials.gov, https://classic.clinicaltrials.gov/ct2/show/NCT02403102 [Accessed 27 August 2023].Suche in Google Scholar

179. Khalil, D, Lotfalla, A, Girard, A, Ha, R, Dercle, L, Seban, RD. Advances in PET/CT imaging for breast cancer patients and beyond. J Clin Med 2023;12:651. https://doi.org/10.3390/jcm12020651.Suche in Google Scholar PubMed PubMed Central

180. Ray, GL, Baidoo, KE, Keller, LMM, Albert, PS, Brechbiel, MW, Milenic, DE. Pre-clinical assessment of 177Lu-labeled trastuzumab targeting HER2 for treatment and management of cancer patients with disseminated intraperitoneal disease. Pharmaceuticals 2012;5:1. https://doi.org/10.3390/ph5010001.Suche in Google Scholar PubMed PubMed Central

181. De Galiza Barbosa, F, Queiroz, MA, Nunes, RF, Costa, LB, Zaniboni, EC, Marin, JFG, et al.. Nonprostatic diseases on PSMA PET imaging: a spectrum of benign and malignant findings. Cancer Imag 2020;20:23. https://doi.org/10.1186/S40644-020-00300-7.Suche in Google Scholar

182. Shah, HJ, Ruppell, E, Bokhari, R, Aland, P, Lele, VR, Ge, C, et al.. Current and upcoming radionuclide therapies in the direction of precision oncology: a narrative review. Eur J Radiol Open 2023;10:100477. https://doi.org/10.1016/J.EJRO.2023.100477.Suche in Google Scholar

183. Castaldi, P, Leccisotti, L, Bussu, F, Miccichè, F, Rufini, V. Role of 18F-FDG PET-CT in head and neck squamous cell carcinoma. Acta Otorhinolaryngol Ital 2013;33:1.Suche in Google Scholar

184. Ishibashi, M, Takahashi, M, Yamaya, T, Imai, Y. Current and future PET imaging for multiple myeloma. Life 2023;13:1701. https://doi.org/10.3390/LIFE13081701.Suche in Google Scholar PubMed PubMed Central

185. Al-Ibraheem, A, Abdlkadir, AS, Juweid, ME, Al-Rabi, K, Ma’koseh, M, Abdel-Razeq, H, et al.. FDG-PET/CT in the monitoring of lymphoma immunotherapy response: current status and future prospects. Cancers 2023;15:1063. https://doi.org/10.3390/CANCERS15041063/S1.Suche in Google Scholar

186. Arimoto, MK, Nakamoto, Y, Nakatani, K, Ishimori, T, Yamashita, K, Takaori-Kondo, A, et al.. Increased bone marrow uptake of 18F-FDG in leukemia patients: preliminary findings. SpringerPlus 2015;4:521. https://doi.org/10.1186/s40064-015-1339-2.Suche in Google Scholar PubMed PubMed Central

187. Ko, CC, Yeh, LR, Kuo, YT, Chen, JH. Imaging biomarkers for evaluating tumor response: RECIST and beyond. Biomark Res 2021;9:52. https://doi.org/10.1186/S40364-021-00306-8.Suche in Google Scholar PubMed PubMed Central

188. Grimaldi, S, Terroir, M, Caramella, C. Advances in oncological treatment: limitations of RECIST 1.1 criteria. Q J Nucl Med Mol Imag 2018;62:129–39. https://doi.org/10.23736/s1824-4785.17.03038-2.Suche in Google Scholar PubMed

189. Mokoala, K, Lawal, I, Lengana, T, Kgatle, M, Giesel, FL, Vorster, M, et al.. PSMA theranostics: science and practice. Cancers 2021;13:3904. https://doi.org/10.3390/CANCERS13153904.Suche in Google Scholar PubMed PubMed Central

190. Hennrich, U, Eder, M. [68Ga]Ga-PSMA-11: the first FDA-approved 68Ga-radiopharmaceutical for PET imaging of prostate cancer. Pharmaceuticals 2021;14:713. https://doi.org/10.3390/PH14080713.Suche in Google Scholar PubMed PubMed Central

191. Fendler, WP, Calais, J, Eiber, M, Flavell, RR, Mishoe, A, Feng, FY, et al.. Assessment of 68Ga-PSMA-11 PET accuracy in localizing recurrent prostate cancer: a prospective single-arm clinical trial. JAMA Oncol 2019;5:856. https://doi.org/10.1001/jamaoncol.2019.0096.Suche in Google Scholar PubMed PubMed Central

192. Sanli, Y, Simsek, DH, Sanli, O, Subramaniam, RM, Kendi, AT. 177Lu-PSMA therapy in metastatic castration-resistant prostate cancer. Biomedicines 2021;9:430. https://doi.org/10.3390/BIOMEDICINES9040430.Suche in Google Scholar

193. Ribeiro, LN, De Lima, MHDCT, Carvalho, AT, Albuquerque, R, Leão, J, Silva, I. Evaluation of the salivary function of patients in treatment with radiotherapy for head and neck cancer submitted to photobiomodulation. Med Oral Patol Oral Cir Bucal 2021;26:e14. https://doi.org/10.4317/medoral.23912.Suche in Google Scholar PubMed PubMed Central

194. Yadav, MP, Ballal, S, Sahoo, RK, Tripathi, M, Seth, A, Bal, C. Efficacy and safety of 225Ac-PSMA-617 targeted alpha therapy in metastatic castration-resistant Prostate Cancer patients. Theranostics 2020;10:9364. https://doi.org/10.7150/thno.48107.Suche in Google Scholar PubMed PubMed Central

195. Kaur, S, Baine, MJ, Jain, M, Sasson, AR, Batra, SK. Early diagnosis of pancreatic cancer: challenges and new developments. Biomark Med 2012;6:597. https://doi.org/10.2217/bmm.12.69.Suche in Google Scholar PubMed PubMed Central

196. Baum, RP, Singh, A, Schuchardt, C, Kulkarni, HR, Klette, I, Wiessalla, S, et al.. 177Lu-3BP-227 for neurotensin receptor 1-targeted therapy of metastatic pancreatic adenocarcinoma: first clinical results. J Nucl Med 2018;59:809–14. https://doi.org/10.2967/jnumed.117.193847.Suche in Google Scholar PubMed

197. Boateng, F, Ngwa, W. Delivery of nanoparticle-based radiosensitizers for radiotherapy applications. Int J Mol Sci 2020;21:273, https://doi.org/10.3390/ijms21010273.Suche in Google Scholar PubMed PubMed Central

198. Okamoto, S, Shiga, T, Tamaki, N. Clinical perspectives of theranostics. Molecules 2021;26:2232. https://doi.org/10.3390/MOLECULES26082232.Suche in Google Scholar

199. Stokke, C, Gabiña, PM, Solný, P, Cicone, F, Sandström, M, Gleisner, KS, et al.. Dosimetry-based treatment planning for molecular radiotherapy: a summary of the 2017 report from the Internal Dosimetry Task Force. EJNMMI Phys 2017;4:27. https://doi.org/10.1186/S40658-017-0194-3.Suche in Google Scholar PubMed PubMed Central

Received: 2024-02-25
Accepted: 2024-05-10
Published Online: 2024-05-29
Published in Print: 2024-09-25

© 2024 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 8.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znc-2024-0043/html?lang=de
Button zum nach oben scrollen