Abstract
Sakuranetin (SKN), a naturally derived 7-O-methylated flavonoid, was first identified in the bark of the cherry tree (Prunus spp.) as an aglycone of sakuranin and then purified from the bark of Prunus puddum. It was later reported in many other plants including Artemisia campestris, Boesenbergia pandurata, Baccharis spp., Betula spp., Juglans spp., and Rhus spp. In plants, it functions as a phytoalexin synthesized from its precursor naringenin and is the only known phenolic phytoalexin in rice, which is released in response to different abiotic and biotic stresses such as UV-irradiation, jasmonic acid, cupric chloride, L-methionine, and the phytotoxin coronatine. Till date, SKN has been widely reported for its diverse pharmacological benefits including antioxidant, anti-inflammatory, antimycobacterial, antiviral, antifungal, antileishmanial, antitrypanosomal, glucose uptake stimulation, neuroprotective, antimelanogenic, and antitumor properties. Its pharmacokinetics and toxicological properties have been poorly understood, thus warranting further evaluation together with exploring other pharmacological properties such as antidiabetic, neuroprotective, and antinociceptive effects. Besides, in vivo studies or clinical investigations can be done for proving its effects as antioxidant and anti-inflammatory, antimelanogenic, and antitumor agent. This review summarizes all the reported investigations with SKN for its health-beneficial roles and can be used as a guideline for future studies.
Acknowledgments
M. Shahinozzaman would like to thank Professor Shinkichi Tawata, Director, PAK Research Center, University of the Ryukyus, Japan and the Biosystem Consulting, Ltd., Okinawa, Japan for providing continuous research support.
-
Author contributions: MJ, YA, SSA, and AN wrote the initial draft for the pharmacological properties of sakuranetin. BB improved the initial draft and wrote the draft of the abstract, introduction, conclusion, table, and figures. RE revised the figures and revised the initial draft. MS conceived the idea, designed the plan, and edited the whole manuscript to improve it. ST critically evaluated the review plan and revised the whole manuscript before final submission.
-
Research funding: This work received no direct funding.
-
Conflict of interest statement: Authors declare no conflict of interest.
References
1. VanEtten, HD, Mansfield, JW, Bailey, JA, Farmer, EE. Two classes of plant antibiotics: phytoalexins versus “phytoanticipins”. Plant Cell 1994;6:1191. https://doi.org/10.2307/3869817.Search in Google Scholar
2. Ahuja, I, Kissen, R, Bones, AM. Phytoalexins in defense against pathogens. Trends Plant Sci 2012;17:73–90. https://doi.org/10.1016/j.tplants.2011.11.002.Search in Google Scholar PubMed
3. Koga, J, Shimura, M, Oshima, K, Ogawa, N, Yamauchi, T, Ogasawara, N. Phytocassanes A, B, C and D, novel diterpene phytoalexins from rice, Oryza sativa L. Tetrahedron 1995;51:7907–18. https://doi.org/10.1016/0040-4020(95)00423-6.Search in Google Scholar
4. Koga, J, Ogawa, N, Yamauchi, T, Kikuchi, M, Ogasawara, N, Shimura, M. Functional moiety for the antifungal activity of phytocassane E, a diterpene phytoalexin from rice. Phytochemistry 1997;44:249–53. https://doi.org/10.1016/s0031-9422(96)00534-1.Search in Google Scholar
5. Yajima, A, Mori, K. Synthesis and absolute configuration of (−)-phytocassane D, a diterpene phytoalexin isolated from the rice plant, Oryza sativa. Eur J Org Chem 2000;2000:4079–91. https://doi.org/10.1002/1099-0690(200012)2000:24<4079::aid-ejoc4079>3.0.co;2-r.10.1002/1099-0690(200012)2000:24<4079::AID-EJOC4079>3.0.CO;2-RSearch in Google Scholar
6. Akatsuka, T, Kodama, O, Sekido, H, Kono, Y, Takeuchi, S. Novel phytoalexins (oryzalexins A, B and C) isolated from rice blast leaves infected with Pyricularia oryzae. Part I: isolation, characterization and biological activities of oryzalexins. Agr Biol Chem 1985;49:1689–94. https://doi.org/10.1271/bbb1961.49.1689.Search in Google Scholar
7. Kato, H, Kodama, O, Akatsuka, T. Oryzalexin E, A diterpene phytoalexin from UV-irradiated rice leaves. Phytochemistry 1993;33:79–81. https://doi.org/10.1016/0031-9422(93)85399-c.Search in Google Scholar
8. Kato, H, Kodama, O, Akatsuka, T. Oryzalexin F, a diterpene phytoalexin from UV-irradiated rice leaves. Phytochemistry 1994;36:299–301. https://doi.org/10.1016/s0031-9422(00)97064-x.Search in Google Scholar
9. Cartwright, DW, Langcake, P, Pryce, RJ, Leworthy, DP, Ride, JP. Isolation and characterization of two phytoalexins from rice as momilactones A and B. Phytochemistry 1981;20:535–7. https://doi.org/10.1016/s0031-9422(00)84189-8.Search in Google Scholar
10. Kato, T, Kabuto, C, Sasaki, N, Tsunagawa, M, Aizawa, H, Fujita, K, et al.. Momilactones, growth inhibitors from rice, Oryza sativa L. Tetrahedron Lett 1973;14:3861–64. https://doi.org/10.1016/s0040-4039(01)87058-1.Search in Google Scholar
11. Tamogani, S, Mitani, M, Kodama, O, Akatsuka, T. Oryzalexin S structure: a new stemarane-type rice plant phytoalexin and its biogenesis. Tetrahedron 1993;49:2025–32. https://doi.org/10.1016/s0040-4020(01)86302-x.Search in Google Scholar
12. Kodama, O, Miyakawa, J, Akatsuka, T, Kiyosawa, S. Sakuranetin, a flavanone phytoalexin from ultraviolet-irradiated rice leaves. Phytochemistry 1992;31:3807–9. https://doi.org/10.1016/s0031-9422(00)97532-0.Search in Google Scholar
13. Knogge, W, Weissenböck, G. Purification, characterization, and kinetic mechanism of S-adenosyl-l-methionine: vitexin 2′′-O-rhamnoside 7-O-methyltransferase of Avena sativa L. Eur J Biochem 1984;140:113–8. https://doi.org/10.1111/j.1432-1033.1984.tb08073.x.Search in Google Scholar PubMed
14. Rakwal, R, Hasegawa, M, Kodama, O. A methyltransferase for synthesis of the flavanone phytoalexin sakuranetin in rice leaves. Biochem Biophys Res Commun 1996;222:732–5. https://doi.org/10.1006/bbrc.1996.0812.Search in Google Scholar PubMed
15. Rakwal, R, Agrawal, GK, Yonekura, M, Kodama, O. Naringenin 7-O-methyltransferase involved in the biosynthesis of the flavanone phytoalexin sakuranetin from rice (Oryza sativa L.). Plant Sci 2000;155:213–21. https://doi.org/10.1016/s0168-9452(00)00223-5.Search in Google Scholar PubMed
16. Liu, H, Li, X, Xiao, J, Wang, S. A convenient method for simultaneous quantification of multiple phytohormones and metabolites: application in study of rice-bacterium interaction. Plant Methods 2012;8:1–12. https://doi.org/10.1186/1746-4811-8-2.Search in Google Scholar PubMed PubMed Central
17. Plowright, R, Grayer, R, Gill, J, Rahman, M, Harborne, J. The induction of phenolic compounds in rice after infection by the stem nematode Ditylenchus angustus. Nematologica 1996;42:564–78.10.1163/004625996X00063Search in Google Scholar
18. Kanno, H, Hasegawa, M, Kodama, O. Accumulation of salicylic acid, jasmonic acid and phytoalexins in rice, Oryza sativa, infested by the white-backed planthopper, Sogatella furcifera (Hemiptera: Delphacidae). Appl Entomol Zool 2012;47:27–34. https://doi.org/10.1007/s13355-011-0085-3.Search in Google Scholar
19. Atkinson, P, Blakeman, J. Seasonal occurrence of an antimicrobial flavanone, sakuranetin, associated with glands on leaves of Ribes nigrum. New Phytol 1982;92:63–74. https://doi.org/10.1111/j.1469-8137.1982.tb03363.x.Search in Google Scholar
20. Asahina, Y. Ueber das Sakuranin, ein neues Glykosid der Rinde von Prunus Pseudo-Cerasus Lindl. var. Sieboldi Maxim. Arch Pharm 1908;246:259–72. https://doi.org/10.1002/ardp.19082460404.Search in Google Scholar
21. Harborne, JB, Baxter, H, Webster, FX. Phytochemical dictionary: a handbook of bioactive compounds from plants. J Chem Ecol 1994;20:815–8.Search in Google Scholar
22. Narasimhachari, N, Seshadri, TR. A note on the components of the bark of Prunus puddum. Proc Indian Acad Sci Sect A 1949;30:271–6.10.1007/BF03048800Search in Google Scholar
23. Asahina, Y, Shinoda, J, Inubuse, M. Uber sakuranin. J Pharm Soc Jpn 1927;550:133–9.10.1248/yakushi1881.1927.550_1007Search in Google Scholar
24. Yamauchi, Y, Okuyama, T, Ishii, T, Okumura, T, Ikeya, Y, Nishizawa, M. Sakuranetin downregulates inducible nitric oxide synthase expression by affecting interleukin-1 receptor and CCAAT/enhancer-binding protein β. J Nat Med 2019;73:353–68. https://doi.org/10.1007/s11418-018-1267-x.Search in Google Scholar PubMed
25. Miyazawa, M, Kinoshita, H, Okuno, Y. Antimutagenic activity of sakuranetin from Prunus jamasakura. J Food Sci 2003;68:52–6. https://doi.org/10.1111/j.1365-2621.2003.tb14113.x.Search in Google Scholar
26. Tamogami, S, Kodama, O. Coronatine elicits phytoalexin production in rice leaves (Oryza sativa L.) in the same manner as jasmonic acid. Phytochemistry 2000;54:689–94. https://doi.org/10.1016/s0031-9422(00)00190-4.Search in Google Scholar PubMed
27. Nakazato, Y, Tamogami, S, Kawai, H, Hasegawa, M, Kodama, O. Methionine-induced phytoalexin production in rice leaves. Biosci Biotechnol Biochem 2000;64:577–83. https://doi.org/10.1271/bbb.64.577.Search in Google Scholar PubMed
28. Tamogami, S, Rakwal, R, Kodama, O. Phytoalexin production by amino acid conjugates of jasmonic acid through induction of naringenin-7-O-methyltransferase, a key enzyme on phytoalexin biosynthesis in rice (Oryza sativa L.). FEBS Lett 1997;401:239–42. https://doi.org/10.1016/s0014-5793(96)01482-2.Search in Google Scholar PubMed
29. Jung, Y-H, Lee, J-H, Agrawal, GK, Rakwal, R, Kim, J-A, Shim, J-K, et al.. The rice (Oryza sativa) blast lesion mimic mutant, blm, may confer resistance to blast pathogens by triggering multiple defense-associated signaling pathways. Plant Physiol Biochem 2005;43:397–406. https://doi.org/10.1016/j.plaphy.2005.03.002.Search in Google Scholar PubMed
30. Lewinsohn, E, Britsch, L, Mazur, Y, Gressel, J. Flavanone glycoside biosynthesis in citrus. Plant Physiol 1989;91:1323–28. https://doi.org/10.1104/pp.91.4.1323.Search in Google Scholar PubMed PubMed Central
31. Martens, S, Mithöfer, A. Flavones and flavone synthases. Phytochemistry 2005;66:2399–407. https://doi.org/10.1016/j.phytochem.2005.07.013.Search in Google Scholar PubMed
32. Wu, J, Zhou, T, Du, G, Zhou, J, Chen, J. Modular optimization of heterologous pathways for de novo synthesis of (2S)-naringenin in Escherichia coli. PLoS ONE 2014;9:e101492. https://doi.org/10.1371/journal.pone.0101492.Search in Google Scholar PubMed PubMed Central
33. Aft, H. Chemistry of dihydroquercetin. I. Acetate derivatives 1a. J Org Chem 1961;26:1958–63. https://doi.org/10.1021/jo01065a065.Search in Google Scholar
34. Kim, M-J, Kim, B-G, Ahn, J-H. Biosynthesis of bioactive O-methylated flavonoids in Escherichia coli. Appl Microbiol Biotechnol 2013;97:7195–204. https://doi.org/10.1007/s00253-013-5020-9.Search in Google Scholar PubMed
35. Wang, X, Li, Z, Policarpio, L, Koffas, MA, Zhang, H. De novo biosynthesis of complex natural product sakuranetin using modular co-culture engineering. Appl Microbiol Biotechnol 2020;104:4849–61. https://doi.org/10.1007/s00253-020-10576-1.Search in Google Scholar PubMed
36. Shimizu, T, Miyamoto, K, Miyamoto, K, Minami, E, Nishizawa, Y, Iino, M, et al.. OsJAR1 contributes mainly to biosynthesis of the stress-induced jasmonoyl-isoleucine involved in defense responses in rice. Biosci Biotechnol Biochem 2013;77:1556–64. https://doi.org/10.1271/bbb.130272.Search in Google Scholar PubMed
37. Miyamoto, K, Enda, I, Okada, T, Sato, Y, Watanabe, K, Sakazawa, T, et al.. Jasmonoyl-l-isoleucine is required for the production of a flavonoid phytoalexin but not diterpenoid phytoalexins in ultraviolet-irradiated rice leaves. Biosci Biotechnol Biochem 2016;80:1934–8. https://doi.org/10.1080/09168451.2016.1189319.Search in Google Scholar PubMed
38. Labarrere, CA, Woods, J, Hardin, J, Campana, G, Ortiz, M, Jaeger, B, et al.. Early prediction of cardiac allograft vasculopathy and heart transplant failure. Am J Transplant 2011;11:528–35. https://doi.org/10.1111/j.1600-6143.2010.03401.x.Search in Google Scholar PubMed
39. Xu, H, Kulkarni, KH, Singh, R, Yang, Z, Wang, SW, Tam, VH, et al.. Disposition of naringenin via glucuronidation pathway is affected by compensating efflux transporters of hydrophilic glucuronides. Mol Pharm 2009;6:1703–15. https://doi.org/10.1021/mp900013d.Search in Google Scholar PubMed PubMed Central
40. Orrego-Lagarón, N, Vallverdú-Queralt, A, Martínez-Huélamo, M, Lamuela-Raventos, RM, Escribano-Ferrer, E. Metabolic profile of naringenin in the stomach and colon using liquid chromatography/electrospray ionization linear ion trap quadrupole-Orbitrap-mass spectrometry (LC-ESI-LTQ-Orbitrap-MS) and LC-ESI-MS/MS. J Pharm Biomed Anal 2016;120:38–45. https://doi.org/10.1016/j.jpba.2015.10.040.Search in Google Scholar PubMed
41. Bredsdorff, L, Nielsen, ILF, Rasmussen, SE, Cornett, C, Barron, D, Bouisset, F, et al.. Absorption, conjugation and excretion of the flavanones, naringenin and hesperetin from α-rhamnosidase-treated orange juice in human subjects. Br J Nutr 2010;103:1602–9. https://doi.org/10.1017/s0007114509993679.Search in Google Scholar
42. Jeong, H, Lee, J, Kim, S, Yeo, YY, So, H, Wu, H, et al.. Hepatic metabolism of sakuranetin and its modulating effects on cytochrome P450s and UDP-glucuronosyltransferases. Molecules 2018;23:1542. https://doi.org/10.3390/molecules23071542.Search in Google Scholar PubMed PubMed Central
43. Katsumata, S, Hamana, K, Horie, K, Toshima, H, Hasegawa, M. Identification of sternbin and naringenin as detoxified metabolites from the rice flavanone phytoalexin sakuranetin by Pyricularia oryzae. Chem Biodivers 2017;14:e1600240. https://doi.org/10.1002/cbdv.201600240.Search in Google Scholar PubMed
44. Benkovic, G, Rimac, H, Males, Z, Tomic, S, Loncar, Z, Bojic, M. Characterization of O-demethylations and aromatic hydroxylations mediated by cytochromes P450 in the metabolism of flavonoid aglycons. Croat Chem Acta 2019;92:115–24.10.5562/cca3528Search in Google Scholar
45. Ibrahim, A-RS, Galal, AM, Ahmed, MS, Mossa, GS. O-demethylation and sulfation of 7-methoxylated flavanones by Cunninghamella elegans. Chem Pharm Bull 2003;51:203–6. https://doi.org/10.1248/cpb.51.203.Search in Google Scholar PubMed
46. Kanaze, F, Bounartzi, M, Georgarakis, M, Niopas, I. Pharmacokinetics of the citrus flavanone aglycones hesperetin and naringenin after single oral administration in human subjects. Eur J Clin Nutr 2007;61:472–77. https://doi.org/10.1038/sj.ejcn.1602543.Search in Google Scholar PubMed
47. Takemoto, JK, Remsberg, CM, Yáñez, JA, Vega-Villa, KR, Davies, NM. Stereospecific analysis of sakuranetin by high-performance liquid chromatography: pharmacokinetic and botanical applications. J Chromatogr B 2008;875:136–41. https://doi.org/10.1016/j.jchromb.2008.07.019.Search in Google Scholar PubMed
48. Li, C, Hu, C, Wang, R, Wang, H, Ma, Q, Chen, S, et al.. Protective effect of sakuranetin in brain cells of dementia model rats. Cell Mol Biol 2019;65:54–8. https://doi.org/10.14715/cmb/2019.65.5.9.Search in Google Scholar
49. Jesus, F, Gonçalves, AC, Alves, G, Silva, LR. Exploring the phenolic profile, antioxidant, antidiabetic and anti-hemolytic potential of Prunus avium vegetal parts. Food Res Int 2019;116:600–10. https://doi.org/10.1016/j.foodres.2018.08.079.Search in Google Scholar PubMed
50. Alam, P, Parvez, MK, Arbab, AH, Siddiqui, NA, Al-Dosary, MS, Al-Rehaily, AJ, et al.. Inter-species comparative antioxidant assay and HPTLC analysis of sakuranetin in the chloroform and ethanol extracts of aerial parts of Rhus retinorrhoea and Rhus tripartita. Pharm Biol 2017;55:1450–7. https://doi.org/10.1080/13880209.2017.1304428.Search in Google Scholar PubMed PubMed Central
51. Sakoda, CPP, de Toledo, AC, Perini, A, Pinheiro, NM, Hiyane, MI, dos Santos Grecco, S, et al.. Sakuranetin reverses vascular peribronchial and lung parenchyma remodeling in a murine model of chronic allergic pulmonary inflammation. Acta Histochem 2016;118:615–24. https://doi.org/10.1016/j.acthis.2016.07.001.Search in Google Scholar PubMed
52. Toledo, A, Sakoda, C, Perini, A, Pinheiro, N, Magalhães, R, Grecco, S, et al.. Flavonone treatment reverses airway inflammation and remodelling in an asthma murine model. Br J Pharmacol 2013;168:1736–49. https://doi.org/10.1111/bph.12062.Search in Google Scholar PubMed PubMed Central
53. Bittencourt-Mernak, MI, Pinheiro, NM, Santana, FP, Guerreiro, MP, Saraiva-Romanholo, BM, Grecco, SS, et al.. Prophylactic and therapeutic treatment with the flavonone sakuranetin ameliorates LPS-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2017;312:L217–30. https://doi.org/10.1152/ajplung.00444.2015.Search in Google Scholar PubMed
54. Santana, FP, da Silva, RC, Grecco, SS, Pinheiro, AJ, Caperuto, LC, Arantes-Costa, FM, et al.. Inhibition of MAPK and STAT3-SOCS3 by sakuranetin attenuated chronic allergic airway inflammation in mice. Mediators Inflamm 2019;2019:1356356. https://doi.org/10.1155/2019/1356356.Search in Google Scholar PubMed PubMed Central
55. Roncon, F, Silva, R, Olivo, C, Arantes-costa, F, Grecco, S, Caperuto, L, et al.. Sakuranetin (5, 4’-dihydroxy-7-methoxyflavanone) reduces airway eosinophilic inflammation in a murine model of allergic asthma due to different mechanisms. In: C74. Asthma: what’s new in allergic inflammation!. American Thoracic Society; 2018:A5802–A5802 pp.Search in Google Scholar
56. Santos, SDO, Melo, P, Grecco, S, Olivo, C, Tiberio, I, Macchione, M, et al.. Sakuranetin, a flavonoid derived from Baccharis retusa, prevents pulmonary inflammation induced by air pollution (total suspended particles) in mice. In: A50. Molecular mechanisms of environmental and occupational lung diseases. American Thoracic Society; 2019:A1843 p.10.1164/ajrccm-conference.2019.199.1_MeetingAbstracts.A1843Search in Google Scholar
57. Taguchi, L, Pinheiro, NM, Olivo, CR, Choqueta-Toledo, A, Grecco, SS, Lopes, FD, et al.. A flavanone from Baccharis retusa (Asteraceae) prevents elastase-induced emphysema in mice by regulating NF-κB, oxidative stress and metalloproteinases. Respir Res 2015;16:1–15. https://doi.org/10.1186/s12931-015-0233-3.Search in Google Scholar PubMed PubMed Central
58. Hernández, V, Recio, MC, Máñez, S, Giner, RM, Ríos, J-L. Effects of naturally occurring dihydroflavonols from Inula viscosa on inflammation and enzymes involved in the arachidonic acid metabolism. Life Sci 2007;81:480–8. https://doi.org/10.1016/j.lfs.2007.06.006.Search in Google Scholar PubMed
59. Kim, K-Y, Kang, H. Sakuranetin inhibits inflammatory enzyme, cytokine, and costimulatory molecule expression in macrophages through modulation of JNK, p38, and STAT1. Evid Based Complement Alternat Med 2016;2016:9824203.10.1155/2016/9824203Search in Google Scholar PubMed PubMed Central
60. Ogawa, Y, Oku, H, Iwaoka, E, Iinuma, M, Ishiguroa, K. Allergy-preventive flavonoids from Xanthorrhoea hastilis. Chem Pharm Bull 2007;55:675–8. https://doi.org/10.1248/cpb.55.675.Search in Google Scholar PubMed
61. Wang, S-L, Hwang, T-L, Chung, M-I, Sung, P-J, Shu, C-W, Cheng, M-J, et al.. New flavones, a 2-(2-phenylethyl)-4h-chromen-4-one derivative, and anti-inflammatory constituents from the stem barks of Aquilaria sinensis. Molecules 2015;20:20912–25. https://doi.org/10.3390/molecules201119736.Search in Google Scholar PubMed PubMed Central
62. Cruz, MP, Andrade, CM, Silva, KO, de Souza, EP, Yatsuda, R, Marques, LM, et al.. Antinoceptive and anti-inflammatory activities of the ethanolic extract, fractions and flavones isolated from Mimosa tenuiflora (Willd.) Poir (Leguminosae). PLoS ONE 2016;11:e0150839. https://doi.org/10.1371/journal.pone.0150839.Search in Google Scholar PubMed PubMed Central
63. Romero-Benavides, JC, Ortega-Torres, GC, Villacis, J, Vivanco-Jaramillo, SL, Galarza-Urgilés, KI, Bailon-Moscoso, N. Phytochemical study and evaluation of the cytotoxic properties of methanolic extract from Baccharis obtusifolia. Int J Med Chem 2018;2018:8908435. https://doi.org/10.1155/2018/8908435.Search in Google Scholar PubMed PubMed Central
64. Park, J-H, Fu, Y-Y, Chung, IS, Hahn, T-R, Cho, M-H. Cytotoxic property of ultraviolet-induced rice phytoalexins to human colon carcinoma HCT-116 cells. J Korean Soc Appl Biol Chem 2013;56:237–41. https://doi.org/10.1007/s13765-012-3238-3.Search in Google Scholar
65. Koirala, N. Metabolic engineering of Eescherichia colibl21 (de3) for the production of methylated/glycosylated flavonoids and their biological activities [PhD thesis]. South Korea: Sun Moon University; 2017.Search in Google Scholar
66. Zhang, L, Kong, Y, Wu, D, Zhang, H, Wu, J, Chen, J, et al.. Three flavonoids targeting the β-hydroxyacyl-acyl carrier protein dehydratase fromHelicobacter pylori: crystal structure characterization with enzymatic inhibition assay. Protein Sci 2008;17:1971–8. https://doi.org/10.1110/ps.036186.108.Search in Google Scholar PubMed PubMed Central
67. Hong, L, Ying, S-H. Ethanol extract and isolated constituents from Artemisia dracunculus inhibit esophageal squamous cell carcinoma and induce apoptotic cell death. Drug Res 2015;65:101–6.10.1055/s-0034-1372647Search in Google Scholar PubMed
68. Ugocsai, K, Varga, A, Molnár, P, Antus, S, Molnár, J. Effects of selected flavonoids and carotenoids on drug accumulation and apoptosis induction in multidrug-resistant colon cancer cells expressing MDR1/LRP. In Vivo 2005;19:433–8.Search in Google Scholar
69. Zhang, S, Yang, X, Coburn, RA, Morris, ME. Structure activity relationships and quantitative structure activity relationships for the flavonoid-mediated inhibition of breast cancer resistance protein. Biochem Pharmacol 2005;70:627–39. https://doi.org/10.1016/j.bcp.2005.05.017.Search in Google Scholar PubMed
70. Woo, Y, Shin, SY, Hyun, J, Lee, SD, Lee, YH, Lim, Y. Flavanones inhibit the clonogenicity of HCT116 cololectal cancer cells. Int J Mol Med 2012;29:403–8.Search in Google Scholar
71. Jung, H, Lee, EH, Lee, TH, Cho, M-H. The methoxyflavonoid isosakuranetin suppresses UV-B-induced matrix metalloproteinase-1 expression and collagen degradation relevant for skin photoaging. Int J Mol Sci 2016;17:1449. https://doi.org/10.3390/ijms17091449.Search in Google Scholar PubMed PubMed Central
72. Drira, R, Sakamoto, K. Sakuranetin induces melanogenesis in B16BL6 melanoma cells through inhibition of ERK and PI3K/AKT signaling pathways. Phytother Res 2016;30:997–1002. https://doi.org/10.1002/ptr.5606.Search in Google Scholar PubMed
73. Rojas, A, Cruz, S, Ponce-Monter, H, Mata, R. Smooth muscle relaxing compounds from Dodonaea viscosa 5. Planta Med 1996;62:154–9. https://doi.org/10.1055/s-2006-957840.Search in Google Scholar PubMed
74. Saito, T, Abe, D, Sekiya, K. Sakuranetin induces adipogenesis of 3T3-L1 cells through enhanced expression of PPARγ2. Biochem Biophys Res Commun 2008;372:835–9. https://doi.org/10.1016/j.bbrc.2008.05.146.Search in Google Scholar PubMed
75. Zhang, L-B, Ji, J, Lei, C, Wang, H-Y, Zhao, Q-S, Hou, A-J. Isoprenylated flavonoid and adipogenesis-promoting constituents of Dodonaea viscosa. J Nat Prod 2012;75:699–706. https://doi.org/10.1021/np2009797.Search in Google Scholar PubMed
76. Rivero-Cruz, I, Acevedo, L, Guerrero, JA, Martínez, S, Pereda-Miranda, R, Mata, R, et al.. Antimycobacterial agents from selected Mexican medicinal plants. J Pharm Pharmacol 2005;57:1117–26.10.1211/jpp.57.9.0007Search in Google Scholar PubMed
77. Chen, J-J, Yang, C-S, Peng, C-F, Chen, I-S, Miaw, C-L. Dihydroagarofuranoid sesquiterpenes, a lignan derivative, a benzenoid, and antitubercular constituents from the stem of Microtropis japonica. J Nat Prod 2008;71:1016–21. https://doi.org/10.1021/np800097t.Search in Google Scholar PubMed
78. Ahmed, MS, Galal, AM, Ross, SA, Ferreira, D, ElSohly, MA, Ibrahim, A-RS, et al.. A weakly antimalarial biflavanone from Rhus retinorrhoea. Phytochemistry 2001;58:599–602. https://doi.org/10.1016/s0031-9422(01)00244-8.Search in Google Scholar PubMed
79. Choi, H-J. In vitro antiviral activity of sakuranetin against human rhinovirus 3. Osong Public Health Res Perspect 2017;8:415–20. https://doi.org/10.24171/j.phrp.2017.8.6.09.Search in Google Scholar PubMed PubMed Central
80. Kwon, DH, Ji, JH, Yim, SH, Kim, BS, Choi, HJ. Suppression of influenza B virus replication by sakuranetin and mode of its action. Phytother Res 2018;32:2475–9. https://doi.org/10.1002/ptr.6186.Search in Google Scholar PubMed
81. Grecco, SDS, Reimão, JQ, Tempone, AG, Sartorelli, P, Cunha, RL, Romoff, P, et al.. In vitro antileishmanial and antitrypanosomal activities of flavanones from Baccharis retusa DC. (Asteraceae). Exp Parasitol 2012;130:141–5. https://doi.org/10.1016/j.exppara.2011.11.002.Search in Google Scholar PubMed
82. Ribeiro, A, Piló-Veloso, D, Romanha, AJ, Zani, CL. Trypanocidal flavonoids from Trixis vauthieri. J Nat Prod 1997;60:836–8. https://doi.org/10.1021/np970196p.Search in Google Scholar PubMed
83. Funari, CS, Almeida, L, Passalacqua, TG, Martinez, I, Ambrosio, DL, Cicarelli, RMB, et al.. Oleanonic acid from Lippia lupulina (Verbenaceae) shows strong in vitro antileishmanial and antitrypanosomal activity. Acta Amaz 2016;46:411–6. https://doi.org/10.1590/1809-4392201600204.Search in Google Scholar
84. Grecco, DS, Dorigueto, AC, Landre, IM, Soares, MG, Martho, K, Lima, R, et al.. Structural crystalline characterization of sakuranetin – an antimicrobial flavanone from twigs of Baccharis retusa (Asteraceae). Molecules 2014;19:7528–42. https://doi.org/10.3390/molecules19067528.Search in Google Scholar PubMed PubMed Central
85. Danelutte, AP, Lago, JHG, Young, MCM, Kato, MJ. Antifungal flavanones and prenylated hydroquinones from Piper crassinervium Kunth. Phytochemistry 2003;64:555–9. https://doi.org/10.1016/s0031-9422(03)00299-1.Search in Google Scholar PubMed
86. Pacciaroni, AV, de los Angeles Gette, M, Derita, M, Ariza‐Espinar, L, Gil, RR, Zacchino, SA, et al.. Antifungal activity of Heterothalamus alienus metabolites. Phytother Res 2008;22:524–8. https://doi.org/10.1002/ptr.2380.Search in Google Scholar PubMed
87. Kimata, M, Shichijo, M, Miura, T, Serizawa, I, Inagaki, N, Nagai, H. Effects of luteolin, quercetin and baicalein on immunoglobulin E-mediated mediator release from human cultured mast cells. Clin Exp Allergy 2000;30:501–8. https://doi.org/10.1046/j.1365-2222.2000.00768.x.Search in Google Scholar PubMed
88. Shichijo, M, Yamamoto, N, Tsujishita, H, Kimata, M, Nagai, H, Kokubo, T. Inhibition of syk activity and degranulation of human mast cells by flavonoids. Biol Pharm Bull 2003;26:1685–90. https://doi.org/10.1248/bpb.26.1685.Search in Google Scholar PubMed
89. Williams, T, Hellewell, P. Mechanisms and pharmacological manipulation of eosinophil accumulation in vivo. Trends Pharmacol Sci 1995;16:418–23. https://doi.org/10.1016/s0165-6147(00)89092-6.Search in Google Scholar PubMed
90. Hirano, T, Higa, S, Arimitsu, J, Naka, T, Shima, Y, Ohshima, S, et al.. Flavonoids such as luteolin, fisetin and apigenin are inhibitors of interleukin-4 and interleukin-13 production by activated human basophils. Int Arch Allergy Immunol 2004;134:135–40. https://doi.org/10.1159/000078498.Search in Google Scholar PubMed
91. Dornas, W, Oliveira, TT, Rodrigues-das-Dores, R, Santos, AF, Nagem, TJ. Flavonóides: potencial terapêutico no estresse oxidativo. Rev Cienc Farm Basica Apl 2007;28.Search in Google Scholar
92. Havsteen, BH. The biochemistry and medical significance of the flavonoids. Pharmacol Ther 2002;96:67–202. https://doi.org/10.1016/s0163-7258(02)00298-x.Search in Google Scholar PubMed
93. Mernak, M, Santana, F, Pinheiro, N, Saraiva-Ramanholo, B, Grecco, S, Tibério, I, et al.. Lung inflammation was attenuated by sakuranetin treatment in a model of acute lung injury. Eur Respir J 2014;44:P3932.Search in Google Scholar
94. Zhang, X, Hung, TM, Phuong, PT, Ngoc, TM, Min, B-S, Song, K-S, et al.. Anti-inflammatory activity of flavonoids from Populus davidiana. Arch Pharm Res 2006;29:1102–8. https://doi.org/10.1007/bf02969299.Search in Google Scholar
95. Brown, AK, Papaemmanouil, A, Bhowruth, V, Bhatt, A, Dover, LG, Besra, GS. Flavonoid inhibitors as novel antimycobacterial agents targeting Rv0636, a putative dehydratase enzyme involved in Mycobacterium tuberculosis fatty acid synthase II. Microbiology 2007;153:3314–22. https://doi.org/10.1099/mic.0.2007/009936-0.Search in Google Scholar PubMed
96. Cao, R, Teskey, G, Islamoglu, H, Gutierrez, M, Salaiz, O, Munjal, S, et al.. Flavonoid mixture inhibits mycobacterium tuberculosis survival and infectivity. Molecules 2019;24:851. https://doi.org/10.3390/molecules24050851.Search in Google Scholar PubMed PubMed Central
97. Villaume, SA, Fu, J, N’Go, I, Liang, H, Lou, H, Kremer, L, et al.. Natural and synthetic flavonoids as potent mycobacterium tuberculosis UGM inhibitors. Chem Eur J 2017;23:10423–9. https://doi.org/10.1002/chem.201701812.Search in Google Scholar PubMed
98. Nayeem, N, Imran, M, Bawadekji, A. Flavonoids: a potential group of phytoconstituents against mycobacterial infections. J North Basic Appl Sci 2018;3:44–60. https://doi.org/10.12816/0046700.Search in Google Scholar
99. Rastogi, N, Legrand, E, Sola, C. The mycobacteria: an introduction to nomenclature and pathogenesis. Rev Sci Tech 2001;20:21–54. https://doi.org/10.20506/rst.20.1.1265.Search in Google Scholar PubMed
100. Jacobs, SE, Lamson, DM, George, KS, Walsh, TJ. Human rhinoviruses. Clin Microbiol Rev 2013;26:135–62. https://doi.org/10.1128/cmr.00077-12.Search in Google Scholar
101. Maziarz, EK, Perfect, JR. Cryptococcosis. Infect Dis Clin 2016;30:179–206. https://doi.org/10.1016/j.idc.2015.10.006.Search in Google Scholar PubMed PubMed Central
102. de Oliveira Santos, GC, Vasconcelos, CC, Lopes, AJ, de Sousa Cartágenes, MS, do Nascimento, FR, Ramos, RM, et al.. Candida infections and therapeutic strategies: mechanisms of action for traditional and alternative agents. Front Microbiol 2018;9:1351. https://doi.org/10.3389/fmicb.2018.01351.Search in Google Scholar PubMed PubMed Central
103. Cabanillas, BJ, Le Lamer, A-C, Olagnier, D, Castillo, D, Arevalo, J, Valadeau, C, et al.. Leishmanicidal compounds and potent PPARγ activators from Renealmia thyrsoidea (Ruiz & Pav.) Poepp. & Endl. J Ethnopharmacol 2014;157:149–55. https://doi.org/10.1016/j.jep.2014.09.010.Search in Google Scholar PubMed
104. Eisenman, SW, Poulev, A, Struwe, L, Raskin, I, Ribnicky, DM. Qualitative variation of anti-diabetic compounds in different tarragon (Artemisia dracunculus L.) cytotypes. Fitoterapia 2011;82:1062–74. https://doi.org/10.1016/j.fitote.2011.07.003.Search in Google Scholar PubMed PubMed Central
105. Matsukawa, T, Inaguma, T, Han, J, Villareal, MO, Isoda, H. Cyanidin-3-glucoside derived from black soybeans ameliorate type 2 diabetes through the induction of differentiation of preadipocytes into smaller and insulin-sensitive adipocytes. J Nutr Biochem 2015;26:860–7. https://doi.org/10.1016/j.jnutbio.2015.03.006.Search in Google Scholar PubMed
106. Vauzour, D, Vafeiadou, K, Rodriguez-Mateos, A, Rendeiro, C, Spencer, JP. The neuroprotective potential of flavonoids: a multiplicity of effects. Genes Nutr 2008;3:115–26. https://doi.org/10.1007/s12263-008-0091-4.Search in Google Scholar PubMed PubMed Central
107. Chaurasiya, ND, León, F, Ding, Y, Gómez-Betancur, I, Benjumea, D, Walker, LA, et al.. Interactions of desmethoxyyangonin, a secondary metabolite from Renealmia alpinia, with human monoamine oxidase-A and oxidase-B. Evid Based Complement Alternat Med 2017;2017:4018724. https://doi.org/10.1155/2017/4018724.Search in Google Scholar PubMed PubMed Central
108. Gökhan-Kelekçi, N, Yabanoğlu, S, Küpeli, E, Salgın, U, Özgen, Ö, Uçar, G, et al.. A new therapeutic approach in Alzheimer disease: some novel pyrazole derivatives as dual MAO-B inhibitors and antiinflammatory analgesics. Bioorg Med Chem 2007;15:5775–86. https://doi.org/10.1016/j.bmc.2007.06.004.Search in Google Scholar PubMed
109. Comşa, Ş, Cimpean, AM, Raica, M. The story of MCF-7 breast cancer cell line: 40 years of experience in research. Anticancer Res 2015;35:3147–54.Search in Google Scholar
110. Orjala, J, Wright, AD, Behrends, H, Folkers, G, Sticher, O, Rüegger, H, et al.. Cytotoxic and antibacterial dihydrochalcones from Piper aduncum. J Nat Prod 1994;57:18–26. https://doi.org/10.1021/np50103a003.Search in Google Scholar PubMed
111. Liu, Y-L, Ho, DK, Cassady, JM, Cook, VM, Baird, WM. Isolation of potential cancer chemopreventive agents from Eriodictyon californicum. J Nat Prod 1992;55:357–63. https://doi.org/10.1021/np50081a012.Search in Google Scholar PubMed
112. Litman, T, Druley, T, Stein, W, Bates, S. From MDR to MXR: new understanding of multidrug resistance systems, their properties and clinical significance. Cell Mol Life Sci 2001;58:931–59. https://doi.org/10.1007/pl00000912.Search in Google Scholar
113. Chen, G, Li, X, Saleri, F, Guo, M. Analysis of flavonoids in Rhamnus davurica and its antiproliferative activities. Molecules 2016;21:1275. https://doi.org/10.3390/molecules21101275.Search in Google Scholar PubMed PubMed Central
114. Le Bail, JC, Varnat, F, Nicolas, JC, Habrioux, G. Estrogenic and antiproliferative activities on MCF-7 human breast cancer cells by flavonoids. Cancer Lett 1998;130:209–16. https://doi.org/10.1016/s0304-3835(98)00141-4.Search in Google Scholar PubMed
115. Lin, JY, Fisher, DE. Melanocyte biology and skin pigmentation. Nature 2007;445:843–50. https://doi.org/10.1038/nature05660.Search in Google Scholar PubMed
116. Solano, F, Briganti, S, Picardo, M, Ghanem, G. Hypopigmenting agents: an updated review on biological, chemical and clinical aspects. Pigment Cell Res 2006;19:550–71. https://doi.org/10.1111/j.1600-0749.2006.00334.x.Search in Google Scholar PubMed
117. Charles, C, Nachtergael, A, Ouedraogo, M, Belayew, A, Duez, P. Effects of chemopreventive natural products on non-homologous end-joining DNA double-strand break repair. Mutat Res Genet Toxicol Environ Mutagen 2014;768:33–41. https://doi.org/10.1016/j.mrgentox.2014.04.014.Search in Google Scholar PubMed
118. Parasuraman, S. Toxicological screening. J Pharmacol Pharmacother 2011;2:74.10.4103/0976-500X.81895Search in Google Scholar PubMed PubMed Central
119. Assad, M, Jackson, N. Biocompatibility evaluation of orthopedic biomaterials and medical devices: a review of safety and efficacy models. Encycl Biomed Eng 2019;2:281–309. https://doi.org/10.1016/b978-0-12-801238-3.11104-3.Search in Google Scholar
© 2022 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- Review Articles
- Covid-19 vaccines and neurological complications: a systematic review
- Santalum Genus: phytochemical constituents, biological activities and health promoting-effects
- Sakuranetin and its therapeutic potentials – a comprehensive review
- Novel sialidase from non-pathogenic bacterium Oerskovia paurometabola strain O129
- Do Colletotrichum gloeosporioides and Rhizopus stolonifer induce alkaloidal and antifungal responses in Annona muricata seedlings?
- Sesquiterpenoids from Tithonia diversifolia (Hemsl.) A. Gray induce apoptosis and inhibit the cell cycle progression of acute myeloid leukemia cells
- Isolation and purification of 12 flavonoid glycosides from Ginkgo biloba extract using sephadex LH-20 and preparative high-performance liquid chromatography
- Insecticidal activities of the essential oil of Rhynchanthus beesianus rhizomes and its constituents against two species of grain storage insects
Articles in the same Issue
- Frontmatter
- Review Articles
- Covid-19 vaccines and neurological complications: a systematic review
- Santalum Genus: phytochemical constituents, biological activities and health promoting-effects
- Sakuranetin and its therapeutic potentials – a comprehensive review
- Novel sialidase from non-pathogenic bacterium Oerskovia paurometabola strain O129
- Do Colletotrichum gloeosporioides and Rhizopus stolonifer induce alkaloidal and antifungal responses in Annona muricata seedlings?
- Sesquiterpenoids from Tithonia diversifolia (Hemsl.) A. Gray induce apoptosis and inhibit the cell cycle progression of acute myeloid leukemia cells
- Isolation and purification of 12 flavonoid glycosides from Ginkgo biloba extract using sephadex LH-20 and preparative high-performance liquid chromatography
- Insecticidal activities of the essential oil of Rhynchanthus beesianus rhizomes and its constituents against two species of grain storage insects