Home Topological characterization of dendrimer, benzenoid, and nanocone
Article
Licensed
Unlicensed Requires Authentication

Topological characterization of dendrimer, benzenoid, and nanocone

  • Wei Gao EMAIL logo , Muhammad Kamran Siddiqui , Najma Abdul Rehman and Mehwish Hussain Muhammad
Published/Copyright: December 8, 2018
Become an author with De Gruyter Brill

Abstract

Dendrimers are large and complex molecules with very well defined chemical structures. More importantly, dendrimers are highly branched organic macromolecules with successive layers or generations of branch units surrounding a central core. Topological indices are numbers associated with molecular graphs for the purpose of allowing quantitative structure-activity relationships. These topological indices correlate certain physico-chemical properties such as the boiling point, stability, strain energy, and others, of chemical compounds. In this article, we determine hyper-Zagreb index, first multiple Zagreb index, second multiple Zagreb index, and Zagreb polynomials for hetrofunctional dendrimers, triangular benzenoids, and nanocones.

Acknowledgments

The authors are grateful to the anonymous referees for their valuable comments and suggestions that improved this article. This research was supported by The Higher Education Commission of Pakistan Under Research and Development Division, National Research Program for Universities via grant no. 5282/Federal/NRPU/R&D/HEC/2016.

References

1. Chen Z, Dehmer M, Emmert-Streib F, Shi Y. Entropy bounds for dendrimers. Appl Math Comput 2014;242:462–72.10.1016/j.amc.2014.05.105Search in Google Scholar

2. Klajnert B, Bryszewska M. Dendrimers, properties and applications. Acta Biochim Pol 2001;48:199–208.10.18388/abp.2001_5127Search in Google Scholar PubMed

3. Nanjwade BK, Bechra HM, Derkar GK, Manvi FV, Nanjwade VK. Dendrimers emerging polymers for drug-delivery systems. Eur J Pharm Sci 2009;38:185–96.10.1016/j.ejps.2009.07.008Search in Google Scholar PubMed

4. Yamamoto K, Higuchi M, Shiki S, Tsuruta M, Chiba H. Stepwise radial complexation of imine groups in phenylazomethine dendrimers. Nature 2002;415:509–11.10.1038/415509aSearch in Google Scholar PubMed

5. Ashrafi AR, Mirzargar M. PI, Szeged and edge Szeged of an infinite family of nanostar dendrimers. Indian J Chem 2008;47:538–41.Search in Google Scholar

6. Diudea MV, Vizitiu AE, Mirzagar M, Ashrafi AR. Sadhhana polynomial in nano-dendrimers. Carpathian J Math 2010;26:59–66.Search in Google Scholar

7. Diudea MV, Katona G, Molecular topology of dendrimers. In: Newkome GA, editor. Advan Dendritic Macromol 1999;4: 135–201.10.1016/S1874-5229(99)80006-9Search in Google Scholar

8. Wiener H, Structural determination of paraffin boiling points. J Am Chem Soc 1947;69:17–20.10.1021/ja01193a005Search in Google Scholar PubMed

9. Gutman I, Polansky OE. Mathematical concepts in organic chemistry. New York: Springer-Verlag, 1986.10.1007/978-3-642-70982-1Search in Google Scholar

10. Du W, Li X, Shi Y. Algorithms and extremal problem on Wiener polarity index. MATCH Commun Math Comput Chem 2009;62:235–44.Search in Google Scholar

11. Gutman I, Trinajstic N. Graph theory and molecular orbitals total π-electron energy of alternant hydrocarbons. Chem Phys Lett 1972;17:535–8.10.1016/0009-2614(72)85099-1Search in Google Scholar

12. Shirdel GH, Pour HR, Sayadi AM. The hyper-Zagreb index of graph operations. Iran J Math Chem 2013;4:213–20.Search in Google Scholar

13. Ghorbani M, Azimi N. Note on multiple Zagreb indices. Iran J Math Chem 2012;3:137–43.Search in Google Scholar

14. Gutman I, Das KC. Some properties of the second Zagreb index. MATCH Commun Math Comput Chem 2004;50:103–12.Search in Google Scholar

15. Imran M, Siddiqui MK, Naeem M, Iqbal MA. On topological properties of symmetric chemical structures. Symmetry 2018;10:1–21.10.3390/sym10050173Search in Google Scholar

16. Eliasi M, Iranmanesh A, Gutman I. Multiplicative version of first Zagreb index. MATCH Commun Math Comput Chem 2012;68:217–30.Search in Google Scholar

17. Imran S, Siddiqui MK, Imran M, Nadeem MF. Computing topological indices and polynomials for line graphs. Mathematics 2018;6:11–10.10.3390/math6080137Search in Google Scholar

18. Gao W, Siddiqui MK, Imran M, Jamil MK, Farahani MR. Forgotten topological index of chemical structure in drugs. Saudi Pharm J 2016;24:258–67.10.1016/j.jsps.2016.04.012Search in Google Scholar PubMed PubMed Central

19. Gao W, Siddiqui MK, Naeem M, Rehman NA. Topological characterization of carbon graphite and crystal cubic carbon structures. Molecule 2017;22:1496–507.10.3390/molecules22091496Search in Google Scholar PubMed PubMed Central

20. Gao W, Siddiqui MK. Molecular descriptors of nanotube, oxide, silicate, and triangulene networks. J Chem 2017; Article ID. 6540754:1–10.10.1155/2017/6540754Search in Google Scholar

21. Gharibi W, Ahmad A, Siddiqui MK. On Zagreb indices, Zagreb polynomials of nanocone and nanotubes. J Comput Theor Nanosci 2016;13:5086–92.10.1166/jctn.2016.5386Search in Google Scholar

22. Gutman I. Degree-based topological indices. Croat Chem Acta 2013;86:351–61.10.5562/cca2294Search in Google Scholar

23. Idrees N, Naeem, MN, Hussain F, Sadiq A, Siddiqui MK. Molecular descriptors of benzenoid system. Quimica Nova 2017;40:143–5.10.21577/0100-4042.20160173Search in Google Scholar

24. Bajaj S, Sambi SS, Madan AK. Prediction of anti-inflammatory activity of narylanthranilic acids: computational approach using refined Zagreb indices. Croat Chem Acta 2005;78:165–74.Search in Google Scholar

25. Dureja H, Gupta S, Madan AK. Topological models for prediction of pharmacokinetic parameters of cephalosporins using random forest, decision tree and moving average analysis. Sci Pharm 2006;76:377–94.10.3797/scipharm.0803-30Search in Google Scholar

26. Kang, SM, Siddiqui MK, Rehman, NA, Naeem M, Muhammad MH. Topological properties of 2-dimensional silicon-carbons. IEEE Access 2018;6:59362–73.10.1109/ACCESS.2018.2874461Search in Google Scholar

27. Gao W, Siddiqui MK, Naeem M, Imran M. Computing multiple ABC index and multiple GA index of some grid graphs, Open Physic 2018;16:588–98.10.1515/phys-2018-0077Search in Google Scholar

28. Imran M, Siddiqui MK, Ahmad A, Ali U, Hanif N. On the degree-based topological indices of the Tickysim SpiNNaker model. Axioms 2018;7:1–13.10.3390/axioms7040073Search in Google Scholar

29. Siddiqui MK, Imran M, Ahmad A. On Zagreb indices, Zagreb polynomials of some nanostar dendrimers. Appl Math Comput 2016;280:132–9.10.1016/j.amc.2016.01.041Search in Google Scholar

30. Siddiqui MK, M. Naeem, Rahman NA, Imran M. Computing topological indices of certain networks, J Optoelectron Adv Mater 2016;18:884–92.Search in Google Scholar

31. Ashrafi AR, Shabani H. GA index and Zagreb indices of nanocones. Optoelectron Adv Mater Rapid Commun 2010;4:1874–6.Search in Google Scholar

Received: 2018-10-08
Revised: 2018-10-21
Accepted: 2018-11-12
Published Online: 2018-12-08
Published in Print: 2018-12-19

©2019 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 25.10.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znc-2018-0153/html
Scroll to top button