Anti-acetylcholinesterase activity of essential oils and their major constituents from four Ocimum species
Abstract
Ocimum is a genus of considerable importance in traditional medicine worldwide. The goal of this study was to examine the anti-acetylcholinesterase activity of Ocimum essential oils and to correlate the activity with their chemical profiles using a metabolome based GC-MS approach coupled to chemometrics. Further, molecular docking was adopted to rationalize the activity of some essential oil isolates. Essential oil prepared from the four species O. basilicum, O. africanum, O. americanum, and O. minimum exhibited significant anti-acetylcholinesterase activity with (IC50 0.22, 0.175, 0.57 and 0.152 mg/mL, respectively) comparable to that of physostigmine (IC50 0.27 mg/mL). The phenylpropanoids (i.e. estragole) constituted the most dominant chemical group in O. basilicum (sweet basil) and O. minimum, whereas camphor (a ketone) was the most abundant in O. africanum and O. americanum. Supervised and unsupervised multivariate data analyses clearly separated O. africanum and O. americanum from other accessions, with estragole, camphor and, to less extent, β-linalool contributing to species segregation. Estragole was found the most active AchE inhibitor (IC50 0.337 µM) followed by cineole (IC50 2.27 µM), camphor (IC50 21.43 µM) and eugenol (IC50 40.32 µM). Molecular docking revealed that these compounds bind to key amino acids in the catalytic domain of AchE, similar to standard drugs.
References
1. Rates SMK. Plants as source of drugs. Toxicon 2001;39:603–13.10.1016/S0041-0101(00)00154-9Suche in Google Scholar
2. Hostettman K, Marston A. Twenty years of research into medicinal plants: results and perspectives. Phytochem Rev 2002;1:275–85.10.1023/A:1026046026057Suche in Google Scholar
3. Cragg CM, Newman DJ, Snader M. Natural products in drug discovery and development. J Nat Prod 1997;60:52–60.10.1007/978-1-4615-4689-4_1Suche in Google Scholar
4. Gertz HJ, Kiefer M. Review about Ginkgo biloba special extract EGb 761 (Ginkgo). Curr Pharmaceut Design 2004;10:261–4.10.2174/1381612043386437Suche in Google Scholar
5. Bullock R, Dengiz A. Cognitive performance in patients with Alzheimer’s disease receiving cholinesterase inhibitors for up to 5 years. Inter J Clin Pract 2005;59:817–22.10.1111/j.1368-5031.2005.00562.xSuche in Google Scholar
6. Marco-Contelles J, do Carmo Carreiras M, Rodriguez C, Villaroya M, Garcia AG. Synthesis and pharmacology of galanthamine. Chem Rev 2006;106:116–33.10.1021/cr040415tSuche in Google Scholar
7. Hebert LE, Scherr PA, Beckeff LA. Age-specific incidence of Alzheimer’s Disease in a community population. J Am Med Assoc 1995;273:1354–9.10.1001/jama.1995.03520410048025Suche in Google Scholar
8. Arnold SE, Kumar A. Reversible dementias. Med Clin North Am 1993;77:215–25.10.1016/S0025-7125(16)30280-2Suche in Google Scholar
9. Melzer D. New drug treatment for Alzheimer’s disease: lessons for healthcare policy. Br Med J 1998;316:762–764.10.1136/bmj.316.7133.762Suche in Google Scholar PubMed PubMed Central
10. Schulz V. Gingko extract or cholinesterase inhibitors in patients with dementia: what clinical trial and guidelines fail to consider. Phytomedicine 2003;10:74–9.10.1078/1433-187X-00302Suche in Google Scholar PubMed
11. Savelev SU, Okello EJ, Perry EK. Butyryl- and acetyl-cholinesterase inhibitory activities in essential oils of Salvia species and their constituents. Phytother Res 2004;18:315–24.10.1002/ptr.1451Suche in Google Scholar
12. Hitunen R, Holm Y, editors. Basil. The Genus Ocimum. Amsterdam, Netherlands: Harwood Academic Publishers, 1999.Suche in Google Scholar
13. Agarwal R, Gupta SK, Agarwal P, Srivastava S, Alyayutdin R. Anticholinesterase, antioxidant and nitric oxide scavenging activity of the aqueous extract of some medicinal plants. Br J Pharmaceut Res 2013;3:807–16.10.9734/BJPR/2013/4833Suche in Google Scholar
14. Kiendrebeogo M, Coulibaly AY, Nebie RCH, Zeba B, Lamien CE, Lamien-Meda A, et al. Antiacetylcholinesterase and antioxidant activity of essential oils from six medicinal plants from Burkina Faso. Braz J Pharmacog 2011;21:63–9.10.1590/S0102-695X2011005000008Suche in Google Scholar
15. Basak P, Mallick P, Mazumder S, Verma AS. Assessment of antioxidant, anti-inflammatory, anti-cholinesterase and cytotoxic activities of tulsi (Ocimum sanctum) leaves. Inter J Pharmaceut Res Scholars (IJPRS) 2014;3:2014.Suche in Google Scholar
16. Saber AH, Gad ZI, Balbaa SI. The Egyptian Pharmacopoeia, Central Administration of Pharmaceutical Affairs (CAPA), English Text, vol. I, 3rd ed. Cairo: University Press/Cairo, Egypt: Ministry of Health and Population, 26 and 27, 1984.Suche in Google Scholar
17. Farag MA, Al-Mahdy DA. Comparative study of the chemical composition and biological activities of Magnolia grandiflora and Magnolia virginiana flower essential oils. Nat Prod Res 2013;12:1091–7.10.1080/14786419.2012.696256Suche in Google Scholar
18. Ellman GL, Courtney KD, Andres V, Featherstone RM. A new and rapid colorimetric determination of actetylcholinesterase activity. Biochem Pharmacol 1961;7:88–95.10.1016/0006-2952(61)90145-9Suche in Google Scholar
19. Sepsova V, Karasova JZ, Korabecny J, Dolezal R, Zemek F, Bennion BJ, et al. Oximes: inhibitors of human recombinant acetylcholinesterase. A structure-activity relationship (SAR) study. Int J Mol Sci 2013;14:16882–900.10.3390/ijms140816882Suche in Google Scholar
20. Rahman AU, Choudhary MI. Bioactive natural products as a potential source of new pharmacophores. A theory of memory. Pure Appl Chem 2001;73:555–60.10.1351/pac200173030555Suche in Google Scholar
21. Schliebs R, Arendt T. The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J Neur Transm 2006;113:1625–44.10.1007/s00702-006-0579-2Suche in Google Scholar
22. Perry NSL, Bollen C, Perry EK, Ballard C. Salvia for dementia therapy: review of pharmacological activity and pilot tolerability clinical trial. Pharmacol Biochem Behavior 2003;75:651–9.10.1016/S0091-3057(03)00108-4Suche in Google Scholar
23. Lachowicz KJ, Jones GP, Briggs DR, Bienvenu FE, Palmer MV, Mishra V, et al. Characteristics of plants and plant extracts from five varieties of basil (Ocimum basilicum L.) grown in Australia. J Agric Food Chem 1997;45:2660–5.10.1021/jf960791hSuche in Google Scholar
24. Marotti M, Piccaglia R, Giovanelli E. Differences in essential oil composition of basil (Ocimum basilicum L.) Italian cultivars related to morphological characteristics. J Agric Food Chem 1996;44:3926–9.10.1021/jf9601067Suche in Google Scholar
25. Schulz H, Schrader B, Quilitzsch R, Pfeffer S, Krüger H. Rapid classification of basil chemotypes by various vibrational spectroscopy methods. J Agric Food Chem 2003;51:2475–81.10.1021/jf021139rSuche in Google Scholar PubMed
26. Ezzat SM, Salama MM, Sleem AA. Antiulcerogenic activity of the essential oil of the roots of Ocimum basilicum L. var. minimum. Int J Essen Oil Ther 2010;4:137–42.Suche in Google Scholar
27. Goodacre R, Shann B, Gilbert B, Timmins EM, McGovern AC, Alsberg BK, et al. Detection of the dipicolinic acid biomarker in Bacillus spores using Curie-point pyrolysis mass spectrometry and fourier transform infrared spectroscopy. Anal Chem 2000;72:119–27.10.1021/ac990661iSuche in Google Scholar PubMed
28. Brereton RG. Applied chemometrics for scientists. Chichester, West Sussex, UK: John Wiley & Sons Ltd, 2007.10.1002/9780470057780Suche in Google Scholar
29. Urbano M, Luque de Castro MD, Perez PM, Garcia-Olmo J, Gomez-Nieto MA. Ultraviolet-visible spectroscopy and pattern recognition methods for differentiation and classification of wines. Food Chem 2006;97:166–75.10.1016/j.foodchem.2005.05.001Suche in Google Scholar
30. López MD, Pascual-Villalobos MJ. Are monoterpenoids and phenylpropanoids efficient inhibitors of acetylcholinesterase from stored product insect strains? Flavour Frag J 2015;30:108–12.10.1002/ffj.3220Suche in Google Scholar
31. Houghton PJ, Ren YH, Howes MJ. Acetylcholinesterase inhibitors from plants and fungi. Nat Prod Reports 2006;23:181–99.10.1039/b508966mSuche in Google Scholar PubMed
32. Bajda M, Więckowska A, Hebda M, Guzior N, Sotriffer CA, Malawska B. Structure-based search for new inhibitors of cholinesterases. Int J Mol Sci 2013;14:5608–32.10.3390/ijms14035608Suche in Google Scholar PubMed PubMed Central
33. Saxena A, Qian N, Kovach IM, Kozikowski AP, Pang YP, Vellom DC, et al. Identification of amino acid residues involved in the binding of Huperzine A to cholinesterases. Protein Sci 1994;3:1770–817.10.1002/pro.5560031017Suche in Google Scholar PubMed PubMed Central
34. Birks J, Harvey RJ. Donepezil for dementia due to Alzheimer’s disease. In Birks, Jacqueline. Cochrane Database Syst Rev CD001190, 2006.10.1002/14651858.CD001190.pub2Suche in Google Scholar PubMed
35. Julian PL, Pikl J. Studies in the indole series. III. On the synthesis of physostigmine. J Am Chem Soc 1935;57:539–44.10.1021/ja01306a046Suche in Google Scholar
36. Saxena A, Fedorko JM, Vinayaka CR, Medhekar R, Radic Z, Taylor P, et al. Aromatic amino-acid residues at the active and peripheral anionic sites control the binding of E2020 (Aricept®) to cholinesterases. Eur J Biochem 2003;270:4447–58.10.1046/j.1432-1033.2003.03837.xSuche in Google Scholar PubMed
Supplemental Material:
The online version of this article (DOI: 10.1515/znc-2016-0030) offers supplementary material, available to authorized users.
Article note:
This work was presented at the 3rd Conference on Traditional and Alternative Medicine in Birmingham, UK, in 2015.
©2016 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- Research Articles
- Seasonal variation of gastroprotective terpenoids in Maytenus robusta (Celastraceae) quantified by gas chromatography-flame ionization detection (GC-FID)
- Plicosepalin A, a new antioxidant catechin–gallic acid derivative of inositol from the mistletoe Plicosepalus curviflorus
- New lupan-type triterpenoids
- Penicilloitins A and B, new antimicrobial fatty acid esters from a marine endophytic Penicillium species
- Anti-acetylcholinesterase activity of essential oils and their major constituents from four Ocimum species
- The chemical composition, antimicrobial, and antioxidant activities of Pycnocycla spinosa and Pycnocyla flabellifolia essential oils
- Biological evaluation and docking studies of some benzoxazole derivatives as inhibitors of acetylcholinesterase and butyrylcholinesterase
- LC/ESI-MS/MS profiling of Ulmus parvifolia extracts and evaluation of its anti-inflammatory, cytotoxic, and antioxidant activities
- Antiproliferative effect of synthetic cyclic imides (methylphtalimides, carboxylic acid phtalimides and itaconimides) against human cancer cell lines
- Anti-inflammatory activity of highly oxygenated terpenoids from Achillea biebersteinii Afan
- Annual Reviewer Acknowledgement
- Reviewer acknowledgement Biosciences – Zeitschrift für Naturforschung C, volume 71 (2016)
Artikel in diesem Heft
- Frontmatter
- Research Articles
- Seasonal variation of gastroprotective terpenoids in Maytenus robusta (Celastraceae) quantified by gas chromatography-flame ionization detection (GC-FID)
- Plicosepalin A, a new antioxidant catechin–gallic acid derivative of inositol from the mistletoe Plicosepalus curviflorus
- New lupan-type triterpenoids
- Penicilloitins A and B, new antimicrobial fatty acid esters from a marine endophytic Penicillium species
- Anti-acetylcholinesterase activity of essential oils and their major constituents from four Ocimum species
- The chemical composition, antimicrobial, and antioxidant activities of Pycnocycla spinosa and Pycnocyla flabellifolia essential oils
- Biological evaluation and docking studies of some benzoxazole derivatives as inhibitors of acetylcholinesterase and butyrylcholinesterase
- LC/ESI-MS/MS profiling of Ulmus parvifolia extracts and evaluation of its anti-inflammatory, cytotoxic, and antioxidant activities
- Antiproliferative effect of synthetic cyclic imides (methylphtalimides, carboxylic acid phtalimides and itaconimides) against human cancer cell lines
- Anti-inflammatory activity of highly oxygenated terpenoids from Achillea biebersteinii Afan
- Annual Reviewer Acknowledgement
- Reviewer acknowledgement Biosciences – Zeitschrift für Naturforschung C, volume 71 (2016)