Startseite Heat capacity of sodium and potassium hexafluorophosphate
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Heat capacity of sodium and potassium hexafluorophosphate

  • Konrad Burkmann , Bastian Hansel , Franziska Habermann , Bianca Störr , Martin Bertau und Florian Mertens EMAIL logo
Veröffentlicht/Copyright: 30. Oktober 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

The heat capacities of NaPF6 and KPF6 were measured in a broad temperature range using differential scanning calorimetry. The suitability of applying a modified Neumann Kopp rule to calculate the heat capacity of “PF6” was evaluated in order to obtain a general method to predict the heat capacities of other hexafluorophosphates.


Corresponding author: Florian Mertens, Institut für Physikalische Chemie, TU Bergakademie Freiberg, Leipziger Straße 29, 09599 Freiberg, Germany, E-mail:

Funding source: German Federal Ministry of Education and Research

Award Identifier / Grant number: 03XP0332B

Acknowledgments

The authors would also like to thank Dr. Lesia Sandig-Predzymirska for translating Russian-language publications and Prof. Dr. Klaus Bohmhammel as well as Dr. Jürgen Seidel for fruitful discussions especially concerning experimental challenges.

  1. Research ethics: We do not see any ethical hurdle because we did not work on an ethically critical issue.

  2. Author contributions: The authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Competing interests: The authors state no conflicts of interest.

  4. Research funding: The reported research activities have been financially supported by the German Federal Ministry of Education and Research (Grant no. 03XP0332B) and the Free State of Saxony (K. Burkmann, Landesstipendium zur Graduiertenförderung).

  5. Data availability: The raw data can be obtained on request from the corresponding author.

References

1. Terborg, L., Nowak, S., Passerini, S., Winter, M., Karst, U., Haddad, P. R., Nesterenko, P. N. Anal. Chim. Acta 2012, 714, 121–126; https://doi.org/10.1016/j.aca.2011.11.056.Suche in Google Scholar PubMed

2. Kawamura, T., Okada, S., Yamaki, J. J. Power Sources 2006, 156, 547–554; https://doi.org/10.1016/j.jpowsour.2005.05.084.Suche in Google Scholar

3. Kraft, V., Weber, W., Grützke, M., Winter, M., Nowak, S. RSC Adv. 2015, 5, 80150–80157; https://doi.org/10.1039/c5ra16679a.Suche in Google Scholar

4. Stich, M., Göttlinger, M., Kurniawan, M., Schmidt, U., Bund, A. J. Phys. Chem. C 2018, 122, 8836–8842; https://doi.org/10.1021/acs.jpcc.8b02080.Suche in Google Scholar

5. Yang, H., Zhuang, G. V., Ross, P. N. J. Power Sources 2006, 161, 573–579; https://doi.org/10.1016/j.jpowsour.2006.03.058.Suche in Google Scholar

6. European Commission. Study on the Critical Raw Materials for the EU 2023. Final Report; Publications Office of the European Union: Luxembourg, 2023.Suche in Google Scholar

7. Gavritchev, K. S., Sharpataya, G. A., Smagin, A. A., Malyi, E. N., Matyukha, V. A. J. Therm. Anal. Calorim. 2003, 73, 71–83; https://doi.org/10.1023/a:1025125306291.10.1023/A:1025125306291Suche in Google Scholar

8. Gavrichev, K. S., Sharpataya, G. A., Golushina, L. N., Plakhotnik, V. N., Goncharova, I. V. Russ. J. Inorg. Chem. 2002, 47, 940–944.Suche in Google Scholar

9. Ehlert, T. C., Hsia, M.-M. J. Chem. Eng. Data 1972, 17, 18–21; https://doi.org/10.1021/je60052a031.Suche in Google Scholar

10. Staveley, L. A. K., Grey, N. R., Layzell, M. J. Z. Naturforsch. 1963, 18a, 148–154; https://doi.org/10.1515/zna-1963-0207.Suche in Google Scholar

11. Habermann, F., Wirth, A., Burkmann, K., Störr, B., Seidel, J., Gumeniuk, R., Bohmhammel, K., Mertens, F. to be published.Suche in Google Scholar

12. Thomas, D., Abdel-Hafiez, M., Gruber, T., Hüttl, R., Seidel, J., Wolter, A. U., Büchner, B., Kortus, J., Mertens, F. J. Chem. Thermodyn. 2013, 64, 205–225; https://doi.org/10.1016/j.jct.2013.05.018.Suche in Google Scholar

13. Thomas, D., Zeilinger, M., Gruner, D., Hüttl, R., Seidel, J., Wolter, A. U., Fässler, T. F., Mertens, F. J. Chem. Thermodyn. 2015, 85, 178–190; https://doi.org/10.1016/j.jct.2015.01.004.Suche in Google Scholar

14. Taubert, F., Schwalbe, S., Seidel, J., Hüttl, R., Gruber, T., Janot, R., Bobnar, M., Gumeniuk, R., Mertens, F., Kortus, J. Int. J. Mater. Res. 2017, 108, 942–958; https://doi.org/10.3139/146.111550.Suche in Google Scholar

15. Taubert, F., Seidel, J., Hüttl, R., Bobnar, M., Gumeniuk, R., Mertens, F. J. Chem. Thermodyn. 2018, 116, 323–329; https://doi.org/10.1016/j.jct.2017.09.033.Suche in Google Scholar

16. Taubert, F., Seidel, J., Hüttl, R., Bobnar, M., Gumeniuk, R., Mertens, F. J. Chem. Thermodyn. 2019, 130, 119–128; https://doi.org/10.1016/j.jct.2018.09.035.Suche in Google Scholar

17. Loos, S., Gruner, D., Abdel-Hafiez, M., Seidel, J., Hüttl, R., Wolter, A. U., Bohmhammel, K., Mertens, F. J. Chem. Thermodyn. 2015, 85, 77–85; https://doi.org/10.1016/j.jct.2015.01.007.Suche in Google Scholar

18. Della Gatta, G., Richardson, M. J., Sarge, S. M., Stølen, S. Pure Appl. Chem. 2006, 78, 1455–1476; https://doi.org/10.1351/pac200678071455.Suche in Google Scholar

19. Kitashita, K., Hagiwara, R., Ito, Y., Tamada, O. J. Fluorine Chem. 2000, 101, 173–179; https://doi.org/10.1016/s0022-1139(99)00155-4.Suche in Google Scholar

20. Bode, H., Teufer, G. Z. Anorg. Allg. Chem. 1952, 268, 20–24; https://doi.org/10.1002/zaac.19522680104.Suche in Google Scholar

21. Zagorac, D., Müller, H., Ruehl, S., Zagorac, J., Rehme, S. J. Appl. Crystallogr. 2019, 52, 918–925; https://doi.org/10.1107/s160057671900997x.Suche in Google Scholar

22. Maier, C. G., Kelley, K. K. J. Am. Chem. Soc. 1932, 54, 3243–3246; https://doi.org/10.1021/ja01347a029.Suche in Google Scholar

23. Pinatel, E. R., Albanese, E., Civalleri, B., Baricco, M. J. Alloys Compd. 2015, 645, S64−S68; https://doi.org/10.1016/j.jallcom.2015.01.199.Suche in Google Scholar

24. Dematteis, E. M., Jensen, S. R., Jensen, T. R., Baricco, M. J. Chem. Thermodyn. 2020, 143, 106055–106064; https://doi.org/10.1016/j.jct.2020.106055.Suche in Google Scholar

25. Röhr, C., Kniep, R. Z. Naturforsch. 1994, 49b, 650–654; https://doi.org/10.1515/znb-1994-0514.Suche in Google Scholar

26. Riedel, E., Janiak, C. Anorganische Chemie, Vol. 9; De Gruyter: Berlin, Boston, 2015.10.1515/9783110355284Suche in Google Scholar

27. Roine, A. HSC Chemistry; Outokumpu Research Oy: Pori, Finland, 2002.Suche in Google Scholar

Received: 2023-09-18
Accepted: 2023-10-12
Published Online: 2023-10-30
Published in Print: 2023-11-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 2.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2023-0084/html?lang=de
Button zum nach oben scrollen