Ternary Laves phases with the MgCu4Sn-type structure: RECo4Mg (RE = Gd, Dy–Tm, Lu), EuNi4Mg and RET4Cd (RE = Y, La–Nd, Sm, Gd–Dy; T = Cu, Pt)
Abstract
Twenty five new ternary Laves phases RET4Mg and RET4Cd (RE = rare earth element; T = Co, Ni, Cu, Pt) have been synthesized from the elements using niobium or tantalum tubes as inert crucible materials. The lattice parameters have been derived from powder X-ray diffraction data. The structures of Ce1.41(1)Co4Mg0.59(1), Dy1.10(1)Co4Mg0.90(1), LaPt4Cd, Y1.10(1)Cu4Cd0.90(1), Ca0.93(1)Cd0.07(1)Pd2 and Eu0.87(2)Cd0.13(2)Pd2 were refined from single-crystal X-ray diffractometer data. Most phases show certain degrees of RE/Mg or RE/Cd disorder. The quenched phases are assigned to the MgCu2 structure, while the annealed ones adopt the MgCu4Sn type, a translationengleiche superstructure variant of the aristotype. The annealing time has a substantial influence on the degree of ordering and is expressed in the lattice parameters, i.e. larger ones for the disordered samples. The REPt4Cd (RE = La–Nd) samples have been characterized with respect to their magnetic properties. LaPt4Cd is a diamagnet, while CePt4Cd (2.23(1) µB), PrPt4Cd (3.40(1) µB) and NdPt4Cd (3.43(1) µB) are Curie–Weiss paramagnets. The cerium compound shows a slight moment reduction. NdPt4Cd is ordered ferromagnetically at TC = 4.4(1) K.
Acknowledgment
We thank Dipl.-Ing. U. Ch. Rodewald and Dipl.-Ing. J. Kösters for collecting the single-crystal data, M. Sc. C. Paulsen for the EDX investigations, W. Pröbsting for experimental help and Dr. S. Klenner for early phase analytical studies in the RE-Pt-Cd systems.
-
Research ethics: Not applicable.
-
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
-
Competing interests: The authors declare no conflicts of interest regarding this article.
-
Research funding: This work was financed by Universität Münster.
-
Data availability: Data is available from the corresponding author on well-founded request.
References
1. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2022/23); ASM International®: Materials Park: Ohio, USA, 2022.Suche in Google Scholar
2. Simon, A. Angew. Chem. Int. Ed. Engl. 1983, 22, 95–113; https://doi.org/10.1002/anie.198300951.Suche in Google Scholar
3. Nesper, R. Angew. Chem. Int. Ed. Engl. 1991, 30, 789–817; https://doi.org/10.1002/anie.199107891.Suche in Google Scholar
4. Johnston, R. L., Hoffmann, R. Z. Anorg. Allg. Chem. 1992, 616, 105–120; https://doi.org/10.1002/zaac.19926161017.Suche in Google Scholar
5. Nesper, R., Miller, G. J. J. Alloys Compd. 1993, 197, 109–121; https://doi.org/10.1016/0925-8388(93)90628-z.Suche in Google Scholar
6. Parthé, E. Elements of Inorganic Structural Chemistry: Selected Efforts to Predict Structural Features, 2nd ed.; Sutter Parthé K. Publisher: Petit-Lancy: Switzerland, 1996. http://archive-ouverte.unige.ch/unige:97818 (accessed Jun 22, 2020).Suche in Google Scholar
7. Akiba, E., Iba, H. Intermetallics 1998, 6, 461–470; https://doi.org/10.1016/s0966-9795(97)00088-5.Suche in Google Scholar
8. Liu, C. T., Zhu, J. H., Brady, M. P., McKamey, C. G., Pike, L. M. Intermetallics 2000, 8, 1119–1129; https://doi.org/10.1016/s0966-9795(00)00109-6.Suche in Google Scholar
9. Stein, F., Palm, M., Sauthoff, G. Intermetallics 2004, 12, 713–720; https://doi.org/10.1016/j.intermet.2004.02.010.Suche in Google Scholar
10. Stein, F., Palm, M., Sauthoff, G. Intermetallics 2005, 13, 1056–1074; https://doi.org/10.1016/j.intermet.2004.11.001.Suche in Google Scholar
11. Gschneidner, K. A.Jr., Pecharskyy, V. K. Z. Kristallogr. 2006, 221, 375–381.10.1524/zkri.2006.221.5-7.375Suche in Google Scholar
12. Ferro, R., Saccone, A. Intermetallic Chemistry; Elsevier: Amsterdam, 2008.Suche in Google Scholar
13. Ormeci, A., Simon, A., Grin, Y. Angew. Chem. Int. Ed. 2010, 49, 8997–9001; https://doi.org/10.1002/anie.201001534.Suche in Google Scholar PubMed
14. Steurer, W., Dshemuchadse, J. Intermetallics: Structures, Properties, and Statistics, IUCr Monographs on Crystallography, Vol. 26; Oxford University Press: New York, 2016.10.1093/acprof:oso/9780198714552.001.0001Suche in Google Scholar
15. Pöttgen, R., Johrendt, D. Intermetallics, 2nd ed.; De Gruyter: Berlin, 2019.10.1515/9783110636727Suche in Google Scholar
16. Stein, F., Leineweber, A. J. Mater. Sci. 2021, 56, 5321–5427; https://doi.org/10.1007/s10853-020-05509-2.Suche in Google Scholar
17. Yartys, V. A., Lolotykyy, M. V. J. Alloys Compd. 2022, 916, 165219; https://doi.org/10.1016/j.jallcom.2022.165219.Suche in Google Scholar
18. Gießelmann, E. C. J., Pöttgen, R., Janka, O. Z. Anorg. Allg. Chem. 2023, 649, e202300109.10.1002/zaac.202370031Suche in Google Scholar
19. Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R. TYPIX – Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th ed.; Springer: Berlin, 1993.10.1007/978-3-662-10641-9Suche in Google Scholar
20. Gulay, N. L., Kalychak, Y. M., Pöttgen, R. Z. Anorg. Allg. Chem. 2021, 647, 75–80; https://doi.org/10.1002/zaac.202000362.Suche in Google Scholar
21. Gladyshevskii, E. I., Krypyakevich, P. I., Teslyuk, M. Y. Dopov. Akad. Nauk. SSSR 1952, 85, 81–84.Suche in Google Scholar
22. Osamura, K., Murakami, Y. J. Less-Common Met. 1978, 60, 311–313; https://doi.org/10.1016/0022-5088(78)90185-6.Suche in Google Scholar
23. Kohlmann, H. Z. Kristallogr. 2020, 235, 319–332; https://doi.org/10.1515/zkri-2020-0043.Suche in Google Scholar
24. Shiotani, T., Ohta, H., Waki, T., Hashimoto, Y., Tabata, Y., Nakamura, H. J. Alloys Compd. 2023, 961, 170990; https://doi.org/10.1016/j.jallcom.2023.170990.Suche in Google Scholar
25. Rodewald, U. C., Chevalier, B., Pöttgen, R. J. Solid State Chem. 2007, 180, 1720–1736; https://doi.org/10.1016/j.jssc.2007.03.007.Suche in Google Scholar
26. Tappe, F., Pöttgen, R. Rev. Inorg. Chem. 2011, 31, 5–25.10.1515/revic.2011.007Suche in Google Scholar
27. Pöttgen, R., Gulden, Th., Simon, A. GIT Labor-Fachz. 1999, 43, 133–136.Suche in Google Scholar
28. Kußmann, D., Hoffmann, R.-D., Pöttgen, R. Z. Anorg. Allg. Chem. 1998, 624, 1727–1735.10.1002/(SICI)1521-3749(1998110)624:11<1727::AID-ZAAC1727>3.0.CO;2-0Suche in Google Scholar
29. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Suche in Google Scholar
30. Shtender, V. V., Denys, R. V., Paul-Boncour, V., Riabov, A. B., Zavaliy, I. Y. J. Alloys Compd. 2014, 603, 7–13; https://doi.org/10.1016/j.jallcom.2014.03.030.Suche in Google Scholar
31. Shtender, V. V., Pavlyuk, V. V., Zelinska, O. Y., Nitek, W., Paul-Boncour, V., Dmytriv, G. S., Łasocha, W., Zavaliy, I. Y. J. Alloys Compd. 2020, 812, 152072; https://doi.org/10.1016/j.jallcom.2019.152072.Suche in Google Scholar
32. Jin, Q.-Q., Mi, S.-B. J. Alloys Compd. 2014, 582, 130–134; https://doi.org/10.1016/j.jallcom.2013.08.059.Suche in Google Scholar
33. Denys, R. V., Riabov, A. B., Černý, R., Koval’chuk, I. V., Zavaliy, I. Y. J. Solid State Chem. 2012, 187, 1–6; https://doi.org/10.1016/j.jssc.2011.10.040.Suche in Google Scholar
34. Shtender, V. V., Denys, R. V., Zavaliy, I. Y., Zelinska, O. Y., Paul-Boncour, V., Pavlyuk, V. V. J. Solid State Chem. 2015, 232, 228–235; https://doi.org/10.1016/j.jssc.2015.09.031.Suche in Google Scholar
35. Shtender, V. V., Paul-Boncour, V., Denys, R. V., Crivello, J.-C., Zavaliy, I. Y. J. Phys. Chem. C 2020, 124, 196–204; https://doi.org/10.1021/acs.jpcc.9b10252.Suche in Google Scholar
36. Stetskiv, A. O., Gorechyi, A. I., Chumak, I. V., Dmytriv, G. S., Pavlyuk, V. V. Visn. Lviv. Derzh. Univ., Ser. Khim. 1999, 38, 13–14.Suche in Google Scholar
37. Doğan, A., Pöttgen, R. Z. Naturforsch. 2005, 60b, 495–498.10.1515/znb-2005-0503Suche in Google Scholar
38. Hiraoka, K., Kojima, K., Hihara, T., Shinohara, T. J. Magn. Magn. Mater. 1995, 140–144, 1243–1244; https://doi.org/10.1016/0304-8853(94)00651-2.Suche in Google Scholar
39. Sarrao, J. L., Immer, C. D., Fisk, Z., Booth, C. H., Figueroa, E., Lawrence, J. M., Modler, R., Cornelius, A. L., Hundley, M. F., Kwei, G. H., Thompson, J. D., Bridges, F. Phys. Rev. B 1999, 59, 6855–6866; https://doi.org/10.1103/physrevb.59.6855.Suche in Google Scholar
40. Wood, E. A., Compton, V. B. Acta Crystallogr. 1958, 11, 429–433; https://doi.org/10.1107/s0365110x58001134.Suche in Google Scholar
41. Heumann, T., Kniepmeyer, M. Z. Anorg. Allg. Chem. 1957, 290, 191–204; https://doi.org/10.1002/zaac.19572900309.Suche in Google Scholar
42. Harris, I. R., Longworth, G. J. Less-Common Met. 1971, 23, 281–292; https://doi.org/10.1016/0022-5088(71)90142-1.Suche in Google Scholar
43. OriginPro 2016G (version 9.3.2.303), OriginLab Corp.: Northampton, Massachusetts, USA, 2016.Suche in Google Scholar
44. CorelDRAW Graphics Suite 2017 (version 19.0.0.328), Corel Corporation: Ottawa, Ontario, Canada, 2017.Suche in Google Scholar
45. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352; https://doi.org/10.1515/zkri-2014-1737.Suche in Google Scholar
46. Flack, H. D., Bernadinelli, G. Acta Crystallogr. 1999, A55, 908–915; https://doi.org/10.1107/s0108767399004262.Suche in Google Scholar PubMed
47. Flack, H. D., Bernadinelli, G. J. Acta Crystallogr. 2000, 33, 1143–1148; https://doi.org/10.1107/s0021889800007184.Suche in Google Scholar
48. Parsons, S., Flack, H. D., Wagner, T. Acta Crystallogr. B 2013, 69, 249–259; https://doi.org/10.1107/s2052519213010014.Suche in Google Scholar PubMed PubMed Central
49. Brandenburg, K. Diamond (version 4.5), Crystal and Molecular Structure Visualization; Crystal Impact – K. Brandenburg & H. Putz GbR: Bonn, Germany, 2018. https://www.crystalimpact.de/diamond.Suche in Google Scholar
50. Compton, V. B., Matthias, B. T. Acta Crystallogr. 1959, 12, 651–654; https://doi.org/10.1107/s0365110x59001918.Suche in Google Scholar
51. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Suche in Google Scholar
52. Frank, F. C., Kasper, J. S. Acta Crystallogr. 1958, 11, 184–190; https://doi.org/10.1107/s0365110x58000487.Suche in Google Scholar
53. Frank, F. C., Kasper, J. S. Acta Crystallogr. 1959, 12, 483–499; https://doi.org/10.1107/s0365110x59001499.Suche in Google Scholar
54. Lueken, H. Magnetochemie; Teubner: Stuttgart, 1999.10.1007/978-3-322-80118-0Suche in Google Scholar
55. Joseph, R. R., Gschneidner, K. A.Jr., Hungsberg, R. E. Phys. Rev. B 1972, 5, 1878–1885; https://doi.org/10.1103/physrevb.5.1878.Suche in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Artikel in diesem Heft
- Frontmatter
- In this issue
- Research Articles
- [RuCl2(dppf)(PN)]/Pd-cocatalyzed three-component synthesis of 2-pyridinyl-6-arylquinolines
- Electrocatalytic hydrogen evolution at carbon paste electrodes doped with a manganese(II) imidazoledicarboxylate complex
- Crystal structure of the quaternary lithogallate Sr2LiGaO4
- Comparative study of Fe2B3O7 and Mn4(B6O13(OH)): a new structure linking melilite and johachidolite
- Ternary Laves phases with the MgCu4Sn-type structure: RECo4Mg (RE = Gd, Dy–Tm, Lu), EuNi4Mg and RET4Cd (RE = Y, La–Nd, Sm, Gd–Dy; T = Cu, Pt)
- Cementite-type Y3Ru
- tert-Butyldichlorophosphane: crystal structure and its reactivity towards supersilyl sodium
- Syntheses, characterization and properties of copper, silver and palladium complexes with oxazoline-containing ligands
Artikel in diesem Heft
- Frontmatter
- In this issue
- Research Articles
- [RuCl2(dppf)(PN)]/Pd-cocatalyzed three-component synthesis of 2-pyridinyl-6-arylquinolines
- Electrocatalytic hydrogen evolution at carbon paste electrodes doped with a manganese(II) imidazoledicarboxylate complex
- Crystal structure of the quaternary lithogallate Sr2LiGaO4
- Comparative study of Fe2B3O7 and Mn4(B6O13(OH)): a new structure linking melilite and johachidolite
- Ternary Laves phases with the MgCu4Sn-type structure: RECo4Mg (RE = Gd, Dy–Tm, Lu), EuNi4Mg and RET4Cd (RE = Y, La–Nd, Sm, Gd–Dy; T = Cu, Pt)
- Cementite-type Y3Ru
- tert-Butyldichlorophosphane: crystal structure and its reactivity towards supersilyl sodium
- Syntheses, characterization and properties of copper, silver and palladium complexes with oxazoline-containing ligands