Startseite Ternary Laves phases with the MgCu4Sn-type structure: RECo4Mg (RE = Gd, Dy–Tm, Lu), EuNi4Mg and RET4Cd (RE = Y, La–Nd, Sm, Gd–Dy; T = Cu, Pt)
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

Ternary Laves phases with the MgCu4Sn-type structure: RECo4Mg (RE = Gd, Dy–Tm, Lu), EuNi4Mg and RET4Cd (RE = Y, La–Nd, Sm, Gd–Dy; T = Cu, Pt)

  • Maximilian Kai Reimann , Michael Johnscher , Theresa Block , Judith Bönnighausen und Rainer Pöttgen EMAIL logo
Veröffentlicht/Copyright: 14. August 2023
Veröffentlichen auch Sie bei De Gruyter Brill

Abstract

Twenty five new ternary Laves phases RET4Mg and RET4Cd (RE = rare earth element; T = Co, Ni, Cu, Pt) have been synthesized from the elements using niobium or tantalum tubes as inert crucible materials. The lattice parameters have been derived from powder X-ray diffraction data. The structures of Ce1.41(1)Co4Mg0.59(1), Dy1.10(1)Co4Mg0.90(1), LaPt4Cd, Y1.10(1)Cu4Cd0.90(1), Ca0.93(1)Cd0.07(1)Pd2 and Eu0.87(2)Cd0.13(2)Pd2 were refined from single-crystal X-ray diffractometer data. Most phases show certain degrees of RE/Mg or RE/Cd disorder. The quenched phases are assigned to the MgCu2 structure, while the annealed ones adopt the MgCu4Sn type, a translationengleiche superstructure variant of the aristotype. The annealing time has a substantial influence on the degree of ordering and is expressed in the lattice parameters, i.e. larger ones for the disordered samples. The REPt4Cd (RE = La–Nd) samples have been characterized with respect to their magnetic properties. LaPt4Cd is a diamagnet, while CePt4Cd (2.23(1) µB), PrPt4Cd (3.40(1) µB) and NdPt4Cd (3.43(1) µB) are Curie–Weiss paramagnets. The cerium compound shows a slight moment reduction. NdPt4Cd is ordered ferromagnetically at TC = 4.4(1) K.


Corresponding author: Rainer Pöttgen, Institut für Anorganische und Analytische Chemie, Universität Münster, Corrensstrasse 30, 48149 Münster, Germany, E-mail:

Acknowledgment

We thank Dipl.-Ing. U. Ch. Rodewald and Dipl.-Ing. J. Kösters for collecting the single-crystal data, M. Sc. C. Paulsen for the EDX investigations, W. Pröbsting for experimental help and Dr. S. Klenner for early phase analytical studies in the RE-Pt-Cd systems.

  1. Research ethics: Not applicable.

  2. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  3. Competing interests: The authors declare no conflicts of interest regarding this article.

  4. Research funding: This work was financed by Universität Münster.

  5. Data availability: Data is available from the corresponding author on well-founded request.

References

1. Villars, P., Cenzual, K. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2022/23); ASM International®: Materials Park: Ohio, USA, 2022.Suche in Google Scholar

2. Simon, A. Angew. Chem. Int. Ed. Engl. 1983, 22, 95–113; https://doi.org/10.1002/anie.198300951.Suche in Google Scholar

3. Nesper, R. Angew. Chem. Int. Ed. Engl. 1991, 30, 789–817; https://doi.org/10.1002/anie.199107891.Suche in Google Scholar

4. Johnston, R. L., Hoffmann, R. Z. Anorg. Allg. Chem. 1992, 616, 105–120; https://doi.org/10.1002/zaac.19926161017.Suche in Google Scholar

5. Nesper, R., Miller, G. J. J. Alloys Compd. 1993, 197, 109–121; https://doi.org/10.1016/0925-8388(93)90628-z.Suche in Google Scholar

6. Parthé, E. Elements of Inorganic Structural Chemistry: Selected Efforts to Predict Structural Features, 2nd ed.; Sutter Parthé K. Publisher: Petit-Lancy: Switzerland, 1996. http://archive-ouverte.unige.ch/unige:97818 (accessed Jun 22, 2020).Suche in Google Scholar

7. Akiba, E., Iba, H. Intermetallics 1998, 6, 461–470; https://doi.org/10.1016/s0966-9795(97)00088-5.Suche in Google Scholar

8. Liu, C. T., Zhu, J. H., Brady, M. P., McKamey, C. G., Pike, L. M. Intermetallics 2000, 8, 1119–1129; https://doi.org/10.1016/s0966-9795(00)00109-6.Suche in Google Scholar

9. Stein, F., Palm, M., Sauthoff, G. Intermetallics 2004, 12, 713–720; https://doi.org/10.1016/j.intermet.2004.02.010.Suche in Google Scholar

10. Stein, F., Palm, M., Sauthoff, G. Intermetallics 2005, 13, 1056–1074; https://doi.org/10.1016/j.intermet.2004.11.001.Suche in Google Scholar

11. Gschneidner, K. A.Jr., Pecharskyy, V. K. Z. Kristallogr. 2006, 221, 375–381.10.1524/zkri.2006.221.5-7.375Suche in Google Scholar

12. Ferro, R., Saccone, A. Intermetallic Chemistry; Elsevier: Amsterdam, 2008.Suche in Google Scholar

13. Ormeci, A., Simon, A., Grin, Y. Angew. Chem. Int. Ed. 2010, 49, 8997–9001; https://doi.org/10.1002/anie.201001534.Suche in Google Scholar PubMed

14. Steurer, W., Dshemuchadse, J. Intermetallics: Structures, Properties, and Statistics, IUCr Monographs on Crystallography, Vol. 26; Oxford University Press: New York, 2016.10.1093/acprof:oso/9780198714552.001.0001Suche in Google Scholar

15. Pöttgen, R., Johrendt, D. Intermetallics, 2nd ed.; De Gruyter: Berlin, 2019.10.1515/9783110636727Suche in Google Scholar

16. Stein, F., Leineweber, A. J. Mater. Sci. 2021, 56, 5321–5427; https://doi.org/10.1007/s10853-020-05509-2.Suche in Google Scholar

17. Yartys, V. A., Lolotykyy, M. V. J. Alloys Compd. 2022, 916, 165219; https://doi.org/10.1016/j.jallcom.2022.165219.Suche in Google Scholar

18. Gießelmann, E. C. J., Pöttgen, R., Janka, O. Z. Anorg. Allg. Chem. 2023, 649, e202300109.10.1002/zaac.202370031Suche in Google Scholar

19. Parthé, E., Gelato, L., Chabot, B., Penzo, M., Cenzual, K., Gladyshevskii, R. TYPIX – Standardized Data and Crystal Chemical Characterization of Inorganic Structure Types. Gmelin Handbook of Inorganic and Organometallic Chemistry, 8th ed.; Springer: Berlin, 1993.10.1007/978-3-662-10641-9Suche in Google Scholar

20. Gulay, N. L., Kalychak, Y. M., Pöttgen, R. Z. Anorg. Allg. Chem. 2021, 647, 75–80; https://doi.org/10.1002/zaac.202000362.Suche in Google Scholar

21. Gladyshevskii, E. I., Krypyakevich, P. I., Teslyuk, M. Y. Dopov. Akad. Nauk. SSSR 1952, 85, 81–84.Suche in Google Scholar

22. Osamura, K., Murakami, Y. J. Less-Common Met. 1978, 60, 311–313; https://doi.org/10.1016/0022-5088(78)90185-6.Suche in Google Scholar

23. Kohlmann, H. Z. Kristallogr. 2020, 235, 319–332; https://doi.org/10.1515/zkri-2020-0043.Suche in Google Scholar

24. Shiotani, T., Ohta, H., Waki, T., Hashimoto, Y., Tabata, Y., Nakamura, H. J. Alloys Compd. 2023, 961, 170990; https://doi.org/10.1016/j.jallcom.2023.170990.Suche in Google Scholar

25. Rodewald, U. C., Chevalier, B., Pöttgen, R. J. Solid State Chem. 2007, 180, 1720–1736; https://doi.org/10.1016/j.jssc.2007.03.007.Suche in Google Scholar

26. Tappe, F., Pöttgen, R. Rev. Inorg. Chem. 2011, 31, 5–25.10.1515/revic.2011.007Suche in Google Scholar

27. Pöttgen, R., Gulden, Th., Simon, A. GIT Labor-Fachz. 1999, 43, 133–136.Suche in Google Scholar

28. Kußmann, D., Hoffmann, R.-D., Pöttgen, R. Z. Anorg. Allg. Chem. 1998, 624, 1727–1735.10.1002/(SICI)1521-3749(1998110)624:11<1727::AID-ZAAC1727>3.0.CO;2-0Suche in Google Scholar

29. Yvon, K., Jeitschko, W., Parthé, E. J. Appl. Crystallogr. 1977, 10, 73–74; https://doi.org/10.1107/s0021889877012898.Suche in Google Scholar

30. Shtender, V. V., Denys, R. V., Paul-Boncour, V., Riabov, A. B., Zavaliy, I. Y. J. Alloys Compd. 2014, 603, 7–13; https://doi.org/10.1016/j.jallcom.2014.03.030.Suche in Google Scholar

31. Shtender, V. V., Pavlyuk, V. V., Zelinska, O. Y., Nitek, W., Paul-Boncour, V., Dmytriv, G. S., Łasocha, W., Zavaliy, I. Y. J. Alloys Compd. 2020, 812, 152072; https://doi.org/10.1016/j.jallcom.2019.152072.Suche in Google Scholar

32. Jin, Q.-Q., Mi, S.-B. J. Alloys Compd. 2014, 582, 130–134; https://doi.org/10.1016/j.jallcom.2013.08.059.Suche in Google Scholar

33. Denys, R. V., Riabov, A. B., Černý, R., Koval’chuk, I. V., Zavaliy, I. Y. J. Solid State Chem. 2012, 187, 1–6; https://doi.org/10.1016/j.jssc.2011.10.040.Suche in Google Scholar

34. Shtender, V. V., Denys, R. V., Zavaliy, I. Y., Zelinska, O. Y., Paul-Boncour, V., Pavlyuk, V. V. J. Solid State Chem. 2015, 232, 228–235; https://doi.org/10.1016/j.jssc.2015.09.031.Suche in Google Scholar

35. Shtender, V. V., Paul-Boncour, V., Denys, R. V., Crivello, J.-C., Zavaliy, I. Y. J. Phys. Chem. C 2020, 124, 196–204; https://doi.org/10.1021/acs.jpcc.9b10252.Suche in Google Scholar

36. Stetskiv, A. O., Gorechyi, A. I., Chumak, I. V., Dmytriv, G. S., Pavlyuk, V. V. Visn. Lviv. Derzh. Univ., Ser. Khim. 1999, 38, 13–14.Suche in Google Scholar

37. Doğan, A., Pöttgen, R. Z. Naturforsch. 2005, 60b, 495–498.10.1515/znb-2005-0503Suche in Google Scholar

38. Hiraoka, K., Kojima, K., Hihara, T., Shinohara, T. J. Magn. Magn. Mater. 1995, 140–144, 1243–1244; https://doi.org/10.1016/0304-8853(94)00651-2.Suche in Google Scholar

39. Sarrao, J. L., Immer, C. D., Fisk, Z., Booth, C. H., Figueroa, E., Lawrence, J. M., Modler, R., Cornelius, A. L., Hundley, M. F., Kwei, G. H., Thompson, J. D., Bridges, F. Phys. Rev. B 1999, 59, 6855–6866; https://doi.org/10.1103/physrevb.59.6855.Suche in Google Scholar

40. Wood, E. A., Compton, V. B. Acta Crystallogr. 1958, 11, 429–433; https://doi.org/10.1107/s0365110x58001134.Suche in Google Scholar

41. Heumann, T., Kniepmeyer, M. Z. Anorg. Allg. Chem. 1957, 290, 191–204; https://doi.org/10.1002/zaac.19572900309.Suche in Google Scholar

42. Harris, I. R., Longworth, G. J. Less-Common Met. 1971, 23, 281–292; https://doi.org/10.1016/0022-5088(71)90142-1.Suche in Google Scholar

43. OriginPro 2016G (version 9.3.2.303), OriginLab Corp.: Northampton, Massachusetts, USA, 2016.Suche in Google Scholar

44. CorelDRAW Graphics Suite 2017 (version 19.0.0.328), Corel Corporation: Ottawa, Ontario, Canada, 2017.Suche in Google Scholar

45. Petříček, V., Dušek, M., Palatinus, L. Z. Kristallogr. 2014, 229, 345–352; https://doi.org/10.1515/zkri-2014-1737.Suche in Google Scholar

46. Flack, H. D., Bernadinelli, G. Acta Crystallogr. 1999, A55, 908–915; https://doi.org/10.1107/s0108767399004262.Suche in Google Scholar PubMed

47. Flack, H. D., Bernadinelli, G. J. Acta Crystallogr. 2000, 33, 1143–1148; https://doi.org/10.1107/s0021889800007184.Suche in Google Scholar

48. Parsons, S., Flack, H. D., Wagner, T. Acta Crystallogr. B 2013, 69, 249–259; https://doi.org/10.1107/s2052519213010014.Suche in Google Scholar PubMed PubMed Central

49. Brandenburg, K. Diamond (version 4.5), Crystal and Molecular Structure Visualization; Crystal Impact – K. Brandenburg & H. Putz GbR: Bonn, Germany, 2018. https://www.crystalimpact.de/diamond.Suche in Google Scholar

50. Compton, V. B., Matthias, B. T. Acta Crystallogr. 1959, 12, 651–654; https://doi.org/10.1107/s0365110x59001918.Suche in Google Scholar

51. Donohue, J. The Structures of the Elements; Wiley: New York, 1974.Suche in Google Scholar

52. Frank, F. C., Kasper, J. S. Acta Crystallogr. 1958, 11, 184–190; https://doi.org/10.1107/s0365110x58000487.Suche in Google Scholar

53. Frank, F. C., Kasper, J. S. Acta Crystallogr. 1959, 12, 483–499; https://doi.org/10.1107/s0365110x59001499.Suche in Google Scholar

54. Lueken, H. Magnetochemie; Teubner: Stuttgart, 1999.10.1007/978-3-322-80118-0Suche in Google Scholar

55. Joseph, R. R., Gschneidner, K. A.Jr., Hungsberg, R. E. Phys. Rev. B 1972, 5, 1878–1885; https://doi.org/10.1103/physrevb.5.1878.Suche in Google Scholar

Received: 2023-07-24
Accepted: 2023-07-30
Published Online: 2023-08-14
Published in Print: 2023-09-26

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 11.9.2025 von https://www.degruyterbrill.com/document/doi/10.1515/znb-2023-0055/html
Button zum nach oben scrollen