Abstract
The intriguing experimental results regarding the synthesis and structure types adopted by binary InPd3 have been fundamentally addressed using first-principles density functional theory calculations. Longer annealing time at higher temperature leads to stronger and more optimized heteroatomic In–Pd contacts that result in the extended ordering between them and leading to the ZrAl3 structure type. This is followed by another ordered derivative of the TiAl3-type and the metastable disordered AuCu-type when the annealing time and temperature were reduced. The thermodynamic stability order of these three polymorphs of InPd3, i.e. ZrAl3-type > TiAl3-type > AuCu-type is understood from the correlation between formation enthalpies, Madelung energies, and electronic structure and chemical bonding analysis.
Acknowledgments
I cordially acknowledge Prof. Partha Pratim Jana (Department of Chemistry; IIT Kharagpur, WB, India) and all the PPJ group alumni and current members (special mention: Mr. Sandip Kumar Kuila and Dr. Samiran Misra) for enormous support during the Ph.D. days and beyond. I sincerely acknowledge CSIR for my Ph.D. research fellowship (2017–2022). My sincere thanks to Ms. Sangita Neogi for the language polishing during preparation of the manuscript.
-
Author contributions: I have accepted responsibility for the entire content of this submitted manuscript.
-
Research funding: None declared.
-
Conflict of interest statement: I declare that I have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
References
1. Kanatzidis, M. G., Pöttgen, R., Jeitschko, W. Angew. Chem. Int. Ed. 2005, 44, 6996–7023; https://doi.org/10.1002/anie.200462170.Search in Google Scholar PubMed
2. Westbrook, J. H., Fleischer, R. L. Intermetallic Compounds. Principles and Practice, Vol. 1; John Wiley & Sons: Chichester, 1995.Search in Google Scholar
3. Nesper, R. Angew. Chem. Int. Ed. 1991, 30, 789–817; https://doi.org/10.1002/anie.199107891.Search in Google Scholar
4. Pöttgen, R., Johrendt, D. Intermetallics: Synthesis, Structure, Function; De Gruyter: Berlin, 2014.10.1524/9783486856187Search in Google Scholar
5. Armbrüster, M., Kovnir, K., Behrens, M., Teschner, D., Grin, Y., Schlögl, R. J. Am. Chem. Soc. 2010, 132, 14745–14747; https://doi.org/10.1021/ja106568t.Search in Google Scholar PubMed
6. Armbrüster, M., Schlögl, R., Grin, Y. Sci. Technol. Adv. Mater. 2014, 15, 034803 (17 pages); https://doi.org/10.1088/1468-6996/15/3/034803.Search in Google Scholar PubMed PubMed Central
7. Klanjšek, M., Gradišek, A., Kocjan, A., Bobnar, M., Jeglič, P., Wencka, M., Jagličić, Z., Popčević, P., Ivkov, J., Smontara, A., Gille, P., Armbrüster, M., Grin, Y., Dolinšek, J. J. Phys.: Condens. Matter 2012, 24, 085703 (9 pages); https://doi.org/10.1088/0953-8984/24/8/085703.Search in Google Scholar PubMed
8. Osswald, J., Giedigkeit, R., Jentoft, R. E., Armbrüster, M., Girgsdies, F., Kovnir, K., Grin, Y., Schlögl, R., Ressler, T. J. Catal. 2008, 258, 210–218; https://doi.org/10.1016/j.jcat.2008.06.013.Search in Google Scholar
9. Wencka, M., Hahne, M., Kocjan, A., Vrtnik, S., Koželj, P., Korže, D., Jagličić, Z., Sorić, M., Popčević, P., Ivkov, J., Smontara, A., Gille, P., Jurga, S., Tomeš, P., Paschen, S., Ormeci, A., Armbrüster, M., Grin, Y., Dolinšek, J. Intermetallics 2014, 55, 56–65; https://doi.org/10.1016/j.intermet.2014.07.007.Search in Google Scholar
10. Schubert, K. Z. Metallkd. 1952, 43, 1–10; https://doi.org/10.1515/ijmr-1952-430101.Search in Google Scholar
11. Schubert, K. Z. Metallkd. 1955, 46, 43–51; https://doi.org/10.1515/ijmr-1955-460109.Search in Google Scholar
12. Bhan, S., Schubert, K. J. Less-Common Met. 1969, 17, 73–90; https://doi.org/10.1016/0022-5088(69)90038-1.Search in Google Scholar
13. Kohlmann, H., Ritter, C. Z. Naturforsch. 2007, 62b, 929–934.10.1515/znb-2007-0709Search in Google Scholar
14. Kohlmann, H., Ritter, C. Z. Anorg. Allg. Chem. 2009, 635, 1573–1579; https://doi.org/10.1002/zaac.200900053.Search in Google Scholar
15. Huang, M., Chang, Y. A. J. Alloys Compd. 2008, 455, 174–177; https://doi.org/10.1016/j.jallcom.2007.01.022.Search in Google Scholar
16. Roy, N., Kuila, S. K., Harshit, Pramanik, P., Jana, P. P. Eur. J. Inorg. Chem. 2022, 26, e202200309 (8 pages).10.1002/ejic.202200309Search in Google Scholar
17. Ptashkina, E. A., Kabanova, E. G., Kalmykov, K. B., Kuznetsov, V. N., Zhmurko, G. P. J. Alloys Compd. 2020, 845, 156166; https://doi.org/10.1016/j.jallcom.2020.156166.Search in Google Scholar
18. Hohenberg, P., Kohn, W. Phys. Rev. B 1964, 136, 864–871; https://doi.org/10.1103/physrev.136.b864.Search in Google Scholar
19. Kohn, W., Sham, L. J. Phys. Rev. A 1965, 140, 1133–1138; https://doi.org/10.1103/physrev.140.a1133.Search in Google Scholar
20. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P., Wentzcovitch, R. M. J. Phys.: Condens. Matter 2009, 21, 395502 (19 pages); https://doi.org/10.1088/0953-8984/21/39/395502.Search in Google Scholar PubMed
21. Villars, P., Cenzual, K., Eds. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2020/21); ASM International®: Materials Park, Ohio (USA), 2020.Search in Google Scholar
22. Perdew, J. P., Burke, K., Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868; https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar
23. Blöchl, P. E. Phys. Rev. B 1994, 50, 17953–17979.10.1103/PhysRevB.50.17953Search in Google Scholar
24. Kresse, G., Joubert, D. Phys. Rev. B 1999, 59, 1758–1775; https://doi.org/10.1103/physrevb.59.1758.Search in Google Scholar
25. Monkhorst, H. J., Pack, J. D. Phys. Rev. B 1976, 13, 5188–5192; https://doi.org/10.1103/physrevb.13.5188.Search in Google Scholar
26. Methfessel, M., Paxton, A. T. Phys. Rev. B 1989, 40, 3616–3621; https://doi.org/10.1103/physrevb.40.3616.Search in Google Scholar PubMed
27. Fischer, T. H., Almlöf, J. J. Phys. Chem. 1992, 96, 9768–9774; https://doi.org/10.1021/j100203a036.Search in Google Scholar
28. Dronskowski, R., Blöchl, P. E. J. Phys. Chem. 1993, 97, 8617–8624; https://doi.org/10.1021/j100135a014.Search in Google Scholar
29. Deringer, V. L., Tchougréeff, A. L., Dronskowski, R. J. Phys. Chem. 2011, 115, 5461–5466; https://doi.org/10.1021/jp202489s.Search in Google Scholar PubMed
30. Maintz, S., Deringer, V. L., Tchougréeff, A. L., Dronskowski, R. J. Comput. Chem. 2013, 34, 2557–2567; https://doi.org/10.1002/jcc.23424.Search in Google Scholar PubMed
31. Maintz, S., Esser, M., Dronskowski, R. Acta Phys. Pol. B 2016, 47, 1165–1175; https://doi.org/10.5506/aphyspolb.47.1165.Search in Google Scholar
32. Maintz, S., Deringer, V. L., Tchougréeff, A. L., Dronskowski, R. J. Comput. Chem. 2016, 37, 1030–1035; https://doi.org/10.1002/jcc.24300.Search in Google Scholar PubMed PubMed Central
33. Nelson, R., Ertural, C., George, J., Deringer, V. L., Hautier, G., Dronskowski, R. J. Comput. Chem. 2020, 41, 1931–1940; https://doi.org/10.1002/jcc.26353.Search in Google Scholar PubMed
34. Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833–1840; https://doi.org/10.1063/1.1740588.Search in Google Scholar
35. Mulliken, R. S. J. Chem. Phys. 1955, 23, 1841–1846; https://doi.org/10.1063/1.1740589.Search in Google Scholar
36. Mulliken, R. S. J. Chem. Phys. 1955, 23, 2338–2342; https://doi.org/10.1063/1.1741876.Search in Google Scholar
37. Mulliken, R. S. J. Chem. Phys. 1955, 23, 2343–2346; https://doi.org/10.1063/1.1741877.Search in Google Scholar
38. Löwdin, P. O. J. Chem. Phys. 1950, 18, 365–375.10.1063/1.1747632Search in Google Scholar
39. Brandenburg, K. Diamond (version 3.0), Crystal and Molecular Structure Visualization; Crystal Impact – K. Brandenburg & H. Putz GbR: Bonn (Germany), 2004.Search in Google Scholar
40. Momma, K., Izumi, F. J. Appl. Crystallogr. 2011, 44, 1272–1276; https://doi.org/10.1107/s0021889811038970.Search in Google Scholar
41. http://cohp.de/ (accessed Mar 1, 2023).10.18356/25217798-2023-110-1Search in Google Scholar
42. Sluiter, M. H. F. Phase Transitions 2007, 80, 299–309; https://doi.org/10.1080/01411590701228562.Search in Google Scholar
43. Pöttgen, R. Z. Anorg. Allg. Chem. 2014, 640, 869–891; https://doi.org/10.1002/zaac.201400023.Search in Google Scholar
44. van Santen, R. A. J. Phys. Chem. 1984, 88, 5768–5769; https://doi.org/10.1021/j150668a002.Search in Google Scholar
© 2023 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Cobalt(II) and nickel(II) complexes based on 2,5-di(pyridine-4-yl)thiazolo[5,4-d]thiazole and dicarboxylate ligands: synthesis, structures and properties
- Crystal structure of the oxidotechnetate(V) complex Na2[(TcVO)(OTf)5] · 2(TfOH) with TfOH = trifluoromethanesulfonic acid
- Design, synthesis, and in-silico study of new letrozole derivatives as prospective anticancer and antioxidant agents
- Understanding formation of the InPd3 polymorphs: a DFT study
- Aminosilyl-substituted cyclopentadienyl complexes of alkali metals
- Constitution of the fully supported gold(I)alkynyl (dmpme)·bis[gold(I)ethynyldimethylsilyl]methane in solution
- About the pseudo-ternary alkali metal-thallium(I) dicyanamide systems
- Tb2Co(B2O5)2 and Tb2Cu(B2O5)2 – two new borates with gadolinite-type structures
- SrMg2Ga2 with ThCr2Si2-type structure
- Note
- Synthesis and characterization of diphenyl(pentachlorophenyl)phosphanegold(I) chloride
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Cobalt(II) and nickel(II) complexes based on 2,5-di(pyridine-4-yl)thiazolo[5,4-d]thiazole and dicarboxylate ligands: synthesis, structures and properties
- Crystal structure of the oxidotechnetate(V) complex Na2[(TcVO)(OTf)5] · 2(TfOH) with TfOH = trifluoromethanesulfonic acid
- Design, synthesis, and in-silico study of new letrozole derivatives as prospective anticancer and antioxidant agents
- Understanding formation of the InPd3 polymorphs: a DFT study
- Aminosilyl-substituted cyclopentadienyl complexes of alkali metals
- Constitution of the fully supported gold(I)alkynyl (dmpme)·bis[gold(I)ethynyldimethylsilyl]methane in solution
- About the pseudo-ternary alkali metal-thallium(I) dicyanamide systems
- Tb2Co(B2O5)2 and Tb2Cu(B2O5)2 – two new borates with gadolinite-type structures
- SrMg2Ga2 with ThCr2Si2-type structure
- Note
- Synthesis and characterization of diphenyl(pentachlorophenyl)phosphanegold(I) chloride