Home Understanding formation of the InPd3 polymorphs: a DFT study
Article
Licensed
Unlicensed Requires Authentication

Understanding formation of the InPd3 polymorphs: a DFT study

  • Nilanjan Roy EMAIL logo
Published/Copyright: April 14, 2023
Become an author with De Gruyter Brill

Abstract

The intriguing experimental results regarding the synthesis and structure types adopted by binary InPd3 have been fundamentally addressed using first-principles density functional theory calculations. Longer annealing time at higher temperature leads to stronger and more optimized heteroatomic In–Pd contacts that result in the extended ordering between them and leading to the ZrAl3 structure type. This is followed by another ordered derivative of the TiAl3-type and the metastable disordered AuCu-type when the annealing time and temperature were reduced. The thermodynamic stability order of these three polymorphs of InPd3, i.e. ZrAl3-type > TiAl3-type > AuCu-type is understood from the correlation between formation enthalpies, Madelung energies, and electronic structure and chemical bonding analysis.


Corresponding author: Nilanjan Roy, Department of Chemistry, IIT Kharagpur, Kharagpur, West Bengal 721302, India, E-mail:

Acknowledgments

I cordially acknowledge Prof. Partha Pratim Jana (Department of Chemistry; IIT Kharagpur, WB, India) and all the PPJ group alumni and current members (special mention: Mr. Sandip Kumar Kuila and Dr. Samiran Misra) for enormous support during the Ph.D. days and beyond. I sincerely acknowledge CSIR for my Ph.D. research fellowship (2017–2022). My sincere thanks to Ms. Sangita Neogi for the language polishing during preparation of the manuscript.

  1. Author contributions: I have accepted responsibility for the entire content of this submitted manuscript.

  2. Research funding: None declared.

  3. Conflict of interest statement: I declare that I have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

1. Kanatzidis, M. G., Pöttgen, R., Jeitschko, W. Angew. Chem. Int. Ed. 2005, 44, 6996–7023; https://doi.org/10.1002/anie.200462170.Search in Google Scholar PubMed

2. Westbrook, J. H., Fleischer, R. L. Intermetallic Compounds. Principles and Practice, Vol. 1; John Wiley & Sons: Chichester, 1995.Search in Google Scholar

3. Nesper, R. Angew. Chem. Int. Ed. 1991, 30, 789–817; https://doi.org/10.1002/anie.199107891.Search in Google Scholar

4. Pöttgen, R., Johrendt, D. Intermetallics: Synthesis, Structure, Function; De Gruyter: Berlin, 2014.10.1524/9783486856187Search in Google Scholar

5. Armbrüster, M., Kovnir, K., Behrens, M., Teschner, D., Grin, Y., Schlögl, R. J. Am. Chem. Soc. 2010, 132, 14745–14747; https://doi.org/10.1021/ja106568t.Search in Google Scholar PubMed

6. Armbrüster, M., Schlögl, R., Grin, Y. Sci. Technol. Adv. Mater. 2014, 15, 034803 (17 pages); https://doi.org/10.1088/1468-6996/15/3/034803.Search in Google Scholar PubMed PubMed Central

7. Klanjšek, M., Gradišek, A., Kocjan, A., Bobnar, M., Jeglič, P., Wencka, M., Jagličić, Z., Popčević, P., Ivkov, J., Smontara, A., Gille, P., Armbrüster, M., Grin, Y., Dolinšek, J. J. Phys.: Condens. Matter 2012, 24, 085703 (9 pages); https://doi.org/10.1088/0953-8984/24/8/085703.Search in Google Scholar PubMed

8. Osswald, J., Giedigkeit, R., Jentoft, R. E., Armbrüster, M., Girgsdies, F., Kovnir, K., Grin, Y., Schlögl, R., Ressler, T. J. Catal. 2008, 258, 210–218; https://doi.org/10.1016/j.jcat.2008.06.013.Search in Google Scholar

9. Wencka, M., Hahne, M., Kocjan, A., Vrtnik, S., Koželj, P., Korže, D., Jagličić, Z., Sorić, M., Popčević, P., Ivkov, J., Smontara, A., Gille, P., Jurga, S., Tomeš, P., Paschen, S., Ormeci, A., Armbrüster, M., Grin, Y., Dolinšek, J. Intermetallics 2014, 55, 56–65; https://doi.org/10.1016/j.intermet.2014.07.007.Search in Google Scholar

10. Schubert, K. Z. Metallkd. 1952, 43, 1–10; https://doi.org/10.1515/ijmr-1952-430101.Search in Google Scholar

11. Schubert, K. Z. Metallkd. 1955, 46, 43–51; https://doi.org/10.1515/ijmr-1955-460109.Search in Google Scholar

12. Bhan, S., Schubert, K. J. Less-Common Met. 1969, 17, 73–90; https://doi.org/10.1016/0022-5088(69)90038-1.Search in Google Scholar

13. Kohlmann, H., Ritter, C. Z. Naturforsch. 2007, 62b, 929–934.10.1515/znb-2007-0709Search in Google Scholar

14. Kohlmann, H., Ritter, C. Z. Anorg. Allg. Chem. 2009, 635, 1573–1579; https://doi.org/10.1002/zaac.200900053.Search in Google Scholar

15. Huang, M., Chang, Y. A. J. Alloys Compd. 2008, 455, 174–177; https://doi.org/10.1016/j.jallcom.2007.01.022.Search in Google Scholar

16. Roy, N., Kuila, S. K., Harshit, Pramanik, P., Jana, P. P. Eur. J. Inorg. Chem. 2022, 26, e202200309 (8 pages).10.1002/ejic.202200309Search in Google Scholar

17. Ptashkina, E. A., Kabanova, E. G., Kalmykov, K. B., Kuznetsov, V. N., Zhmurko, G. P. J. Alloys Compd. 2020, 845, 156166; https://doi.org/10.1016/j.jallcom.2020.156166.Search in Google Scholar

18. Hohenberg, P., Kohn, W. Phys. Rev. B 1964, 136, 864–871; https://doi.org/10.1103/physrev.136.b864.Search in Google Scholar

19. Kohn, W., Sham, L. J. Phys. Rev. A 1965, 140, 1133–1138; https://doi.org/10.1103/physrev.140.a1133.Search in Google Scholar

20. Giannozzi, P., Baroni, S., Bonini, N., Calandra, M., Car, R., Cavazzoni, C., Ceresoli, D., Chiarotti, G. L., Cococcioni, M., Dabo, I., Dal Corso, A., de Gironcoli, S., Fabris, S., Fratesi, G., Gebauer, R., Gerstmann, U., Gougoussis, C., Kokalj, A., Lazzeri, M., Martin-Samos, L., Marzari, N., Mauri, F., Mazzarello, R., Paolini, S., Pasquarello, A., Paulatto, L., Sbraccia, C., Scandolo, S., Sclauzero, G., Seitsonen, A. P., Smogunov, A., Umari, P., Wentzcovitch, R. M. J. Phys.: Condens. Matter 2009, 21, 395502 (19 pages); https://doi.org/10.1088/0953-8984/21/39/395502.Search in Google Scholar PubMed

21. Villars, P., Cenzual, K., Eds. Pearson’s Crystal Data: Crystal Structure Database for Inorganic Compounds (release 2020/21); ASM International®: Materials Park, Ohio (USA), 2020.Search in Google Scholar

22. Perdew, J. P., Burke, K., Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865–3868; https://doi.org/10.1103/physrevlett.77.3865.Search in Google Scholar

23. Blöchl, P. E. Phys. Rev. B 1994, 50, 17953–17979.10.1103/PhysRevB.50.17953Search in Google Scholar

24. Kresse, G., Joubert, D. Phys. Rev. B 1999, 59, 1758–1775; https://doi.org/10.1103/physrevb.59.1758.Search in Google Scholar

25. Monkhorst, H. J., Pack, J. D. Phys. Rev. B 1976, 13, 5188–5192; https://doi.org/10.1103/physrevb.13.5188.Search in Google Scholar

26. Methfessel, M., Paxton, A. T. Phys. Rev. B 1989, 40, 3616–3621; https://doi.org/10.1103/physrevb.40.3616.Search in Google Scholar PubMed

27. Fischer, T. H., Almlöf, J. J. Phys. Chem. 1992, 96, 9768–9774; https://doi.org/10.1021/j100203a036.Search in Google Scholar

28. Dronskowski, R., Blöchl, P. E. J. Phys. Chem. 1993, 97, 8617–8624; https://doi.org/10.1021/j100135a014.Search in Google Scholar

29. Deringer, V. L., Tchougréeff, A. L., Dronskowski, R. J. Phys. Chem. 2011, 115, 5461–5466; https://doi.org/10.1021/jp202489s.Search in Google Scholar PubMed

30. Maintz, S., Deringer, V. L., Tchougréeff, A. L., Dronskowski, R. J. Comput. Chem. 2013, 34, 2557–2567; https://doi.org/10.1002/jcc.23424.Search in Google Scholar PubMed

31. Maintz, S., Esser, M., Dronskowski, R. Acta Phys. Pol. B 2016, 47, 1165–1175; https://doi.org/10.5506/aphyspolb.47.1165.Search in Google Scholar

32. Maintz, S., Deringer, V. L., Tchougréeff, A. L., Dronskowski, R. J. Comput. Chem. 2016, 37, 1030–1035; https://doi.org/10.1002/jcc.24300.Search in Google Scholar PubMed PubMed Central

33. Nelson, R., Ertural, C., George, J., Deringer, V. L., Hautier, G., Dronskowski, R. J. Comput. Chem. 2020, 41, 1931–1940; https://doi.org/10.1002/jcc.26353.Search in Google Scholar PubMed

34. Mulliken, R. S. J. Chem. Phys. 1955, 23, 1833–1840; https://doi.org/10.1063/1.1740588.Search in Google Scholar

35. Mulliken, R. S. J. Chem. Phys. 1955, 23, 1841–1846; https://doi.org/10.1063/1.1740589.Search in Google Scholar

36. Mulliken, R. S. J. Chem. Phys. 1955, 23, 2338–2342; https://doi.org/10.1063/1.1741876.Search in Google Scholar

37. Mulliken, R. S. J. Chem. Phys. 1955, 23, 2343–2346; https://doi.org/10.1063/1.1741877.Search in Google Scholar

38. Löwdin, P. O. J. Chem. Phys. 1950, 18, 365–375.10.1063/1.1747632Search in Google Scholar

39. Brandenburg, K. Diamond (version 3.0), Crystal and Molecular Structure Visualization; Crystal Impact – K. Brandenburg & H. Putz GbR: Bonn (Germany), 2004.Search in Google Scholar

40. Momma, K., Izumi, F. J. Appl. Crystallogr. 2011, 44, 1272–1276; https://doi.org/10.1107/s0021889811038970.Search in Google Scholar

41. http://cohp.de/ (accessed Mar 1, 2023).10.18356/25217798-2023-110-1Search in Google Scholar

42. Sluiter, M. H. F. Phase Transitions 2007, 80, 299–309; https://doi.org/10.1080/01411590701228562.Search in Google Scholar

43. Pöttgen, R. Z. Anorg. Allg. Chem. 2014, 640, 869–891; https://doi.org/10.1002/zaac.201400023.Search in Google Scholar

44. van Santen, R. A. J. Phys. Chem. 1984, 88, 5768–5769; https://doi.org/10.1021/j150668a002.Search in Google Scholar

Received: 2023-02-11
Accepted: 2023-03-01
Published Online: 2023-04-14
Published in Print: 2023-06-27

© 2023 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 18.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2023-0005/html?lang=en
Scroll to top button