Home Two-dimensional lanthanide(III) coordination polymers: solvothermal synthesis, crystal structure, and stability
Article
Licensed
Unlicensed Requires Authentication

Two-dimensional lanthanide(III) coordination polymers: solvothermal synthesis, crystal structure, and stability

  • Runmei Ding , Zixin He , Meilin Wang , Danian Tian and Peipei Cen EMAIL logo
Published/Copyright: December 4, 2020
Become an author with De Gruyter Brill

Abstract

Based on 2-(4-pyridyl)-terephthalate (H2pta) and oxalate ligands, two new lanthanide-containing coordination polymers (CPs), [Tb(pta)(C2O4)0.5(H2O)2)]·2H2O (1) and [Sm(pta)(C2O4)0.5(H2O)2)]·2H2O (2), have been synthesized under solvothermal conditions. The structures of both 1 and 2 have been determined by single-crystal X-ray diffraction. Infrared, elemental analysis, powder X-ray diffraction and thermogravimetric analysis data are also presented. The crystals of 1 and 2 exhibit isostructural layer-like networks, crystallizing in the triclinic space group P1. The layers are further stabilized and associated into 3D architectures through hydrogen bonding. Remarkably, the CPs 1 and 2 exhibit excellent water stability and remarkable thermostability with thermal decomposition temperatures of more than 420 °C.


Corresponding author: Peipei Cen, College of Basic Medical Sciences, College of Public Health and Management, Ningxia Medical University, Yinchuan750021, P. R. China, E-mail:

Funding source: Natural Science Foundation of Ningxia Province

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: This work was supported by the Natural Science Foundation of Ningxia Province (2020AAC03118).

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Liu, X.-Y., Li, Y., Tsung, C. K., Li, J. Chem. Commun. 2019, 55, 10669–10672; https://doi.org/10.1039/c9cc05533a.Search in Google Scholar PubMed

2. Pan, M., Wu, K., Zhang, J.-H., Su, C.-Y. Coord. Chem. Rev. 2019, 378, 333–349; https://doi.org/10.1016/j.ccr.2017.10.031.Search in Google Scholar

3. Mallick, A., El-Zohry, A. M., Shekhah, O., Yin, J., Jia, J., Aggarwal, H., Emwas, A. H., Mohammed, O. F., Eddaoudi, M. J. Am. Chem. Soc. 2019, 141, 7245–7249; https://doi.org/10.1021/jacs.9b01839.Search in Google Scholar PubMed

4. Shao, Z., Yu, C., Xie, Q., Wu, Q., Zhao, Y., Hou, H. Chem. Commun. 2019, 55, 13382–13385; https://doi.org/10.1039/c9cc06849j.Search in Google Scholar PubMed

5. Ding, M., Flaig, R. W., Jiang, H.-L., Yaghi, O. M. Chem. Soc. Rev. 2019, 48, 2783–2828; https://doi.org/10.1039/c8cs00829a.Search in Google Scholar PubMed

6. Feng, L., Wang, K.-Y., Day, G. S., Zhou, H.-C. Chem. Soc. Rev. 2019, 48, 4823–4853; https://doi.org/10.1039/c9cs00250b.Search in Google Scholar PubMed

7. Cui, Y., Yue, D., Huang, Y., Zhang, J., Wang, Z., Yang, D., Qian, G. Chem. Commun. 2019, 55, 11231–11234; https://doi.org/10.1039/c9cc05019a.Search in Google Scholar PubMed

8. Jiang, K., Zhang, L., Xia, T., Yang, Y., Li, B., Cui, Y., Qian, G. Sci. China Mater. 2019, 62, 1315–1322; https://doi.org/10.1007/s40843-019-9427.Search in Google Scholar

9. Du, W., Zhu, Z., Bai, Y.-L., Yang, Z., Zhu, S., Xu, J., Xie, Z., Fang, J. Chem. Commun. 2018, 54, 5972–5975; https://doi.org/10.1039/c8cc02193g.Search in Google Scholar PubMed

10. Liu, Y., Xie, X.-Y., Cheng, C., Shao, Z.-S., Wang, H.-S. J. Mater. Chem. C 2019, 7, 10743–10763; https://doi.org/10.1039/c9tc03208h.Search in Google Scholar

11. Xiao, J.-D., Han, L., Luo, J., Yu, S.-H., Jiang, H.-L. Angew. Chem. Int. Ed. 2018, 57, 1103–1107; https://doi.org/10.1002/anie.201711725.Search in Google Scholar PubMed

12. Yue, D., Chen, D., Zhang, X., Huang, Y., Wang, Z. Z. Anorg. Allg. Chem. 2019, 645, 1303–1306; https://doi.org/10.1002/zaac.201900225.Search in Google Scholar

13. Nguyen, T. N., Ebrahim, F. M., Stylianou, K. C. Coord. Chem. Rev. 2018, 377, 259–306; https://doi.org/10.1016/j.ccr.2018.08.024.Search in Google Scholar

14. Zhang, Q., Lei, M., Yan, H., Wang, J., Shi, Y. Inorg. Chem. 2017, 56, 7610–7614; https://doi.org/10.1021/acs.inorgchem.7b01156.Search in Google Scholar PubMed

15. Han, M.-L., Wen, G.-X., Dong, W.-W., Zhou, Z.-H., Wu, Y.-P., Zhao, J., Li, D.-S., Ma, L.-F., Bu, X. J. Mater. Chem. C 2017, 5, 8469–8474; https://doi.org/10.1039/c7tc02885g.Search in Google Scholar

16. Zhang, F., Yao, H., Chu, T., Zhang, G., Wang, Y., Yang, Y. Chem. Eur J. 2017, 23, 10293–10300; https://doi.org/10.1002/chem.201701852.Search in Google Scholar PubMed

17. Qin, L., Li, Y.-H., Ma, P.-J., Cui, G.-H. J. Mol. Struct. 2013, 1051, 215–220; https://doi.org/10.1016/j.molstruc.2013.08.013.Search in Google Scholar

18. Wang, X.-L., Chen, Y.-Q., Liu, G.-C., Lin, H.-Y., Zhang, J.-X. J. Solid State Chem. 2009, 182, 2392–2401; https://doi.org/10.1016/j.jssc.2009.06.031.Search in Google Scholar

19. Han, M.-L., Duan, Y.-P., Li, D.-S., Wang, H.-B., Zhao, J., Wang, Y.-Y. Dalton Trans. 2014, 43, 15450–15456; https://doi.org/10.1039/c4dt01086h.Search in Google Scholar PubMed

20. Duan, C.-W., Cao, Y.-Z., Hu, L.-X., Fu, D., Ma, J.-L. Mater. Lett. 2019, 238, 254–257; https://doi.org/10.1016/j.matlet.2018.12.028.Search in Google Scholar

21. Liu, J.-Y., Ren, N., Zhang, J.-J., S He, .-M., Wang, S.-P. Ind. Eng. Chem. Res. 2013, 52, 6156–6163; https://doi.org/10.1021/ie400228j.Search in Google Scholar

22. Sheldrick, G. M. Shelxs-2014, Shelxl-2014, Programs for Crystal Structure Determination, University of Göttingen: Göttingen (Germany), 2014.Search in Google Scholar

23. Zhang, Y., Wu, Y., He, X., Ma, J., Shen, X., Zhu, D. Acta Crystallogr. 2018, C74, 256–262; https://doi.org/10.1107/s2053229618001432.Search in Google Scholar

24. Li, J.-Z., Rouhani, F., Gao, X.-M., Wang, R., Wei, X.-W., Yan, X.-W., Hu, M.-L., Liu, K.-G., Morsali, A. Inorg. Chem. 2019, 58, 5397–5400; https://doi.org/10.1021/acs.inorgchem.9b00264.Search in Google Scholar PubMed

25. Wang, C. G., Xing, Y. H., Li, Z. P., Li, J., Zeng, X. Q., Ge, M. F., Niu, S. Y. Cryst. Growth Des. 2009, 9, 1525–1530; https://doi.org/10.1021/cg801157k.Search in Google Scholar

26. Prieto, G., Tüysüz, H., Duyckaerts, N., Knossalla, J., Wang, G.-H., Schüth, F. Chem. Rev. 2016, 116, 14056–14119; https://doi.org/10.1021/acs.chemrev.6b00374.Search in Google Scholar PubMed

27. Sheldrick, G. M., Sadabs, Program for Empirical Absorption Correction of Area Detector Data, University of Göttingen: Göttingen (Germany), 1996.Search in Google Scholar

28. Duan, L.-J., Zhang, C.-C., Cen, P.-P., Jin, X.-Y., Liang, C., Yang, J.-H., Liu, X.-Y. CrystEngComm. 2020, 22, 1695–1704; https://doi.org/10.1039/c9ce01995b.Search in Google Scholar

Received: 2020-07-29
Accepted: 2020-11-10
Published Online: 2020-12-04
Published in Print: 2021-01-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 14.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2020-0136/html
Scroll to top button