Home Regioselective synthesis of salicylates and acetophenones by formal [3+3]-cyclocondensations of 3-oxoorthoesters with 1,3-bis(trimethylsilyloxy)-1,3-butadienes
Article
Licensed
Unlicensed Requires Authentication

Regioselective synthesis of salicylates and acetophenones by formal [3+3]-cyclocondensations of 3-oxoorthoesters with 1,3-bis(trimethylsilyloxy)-1,3-butadienes

  • Jörg-Peter Gütlein , Mathias Lubbe , Holger Feist , Alexander Villinger and Peter Langer EMAIL logo
Published/Copyright: December 10, 2020
Become an author with De Gruyter Brill

Abstract

A variety of 4-methoxysalicylates and related polyketide-type phenols are regioselectively prepared by formal [3+3] cyclocondensations of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with 3-oxo-orthoesters. Cycloalkyl-substituted salicylates were prepared for the first time.


Corresponding author: Peter Langer, Institut für Chemie, Universität Rostock, Albert-Einstein-Str. 3a, 18059Rostock, Germany; and Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Str. 29a, 18059Rostock, Germany, E-mail: . https://www.langer.chemie.uni-rostock.de/

Acknowledgements

Financial support by the State of Mecklenburg-Vorpommern is gratefully acknowledged.

  1. Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: State of Mecklenburg-Vorpommern.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Quideau, S., Deffieux, D., Douat-Casassus, C., Pouységu, L. Angew. Chem. Int. Ed. 2011, 50, 586–621; https://doi.org/10.1002/anie.201000044.Search in Google Scholar PubMed

2. Daglia, M. Curr. Opin. Biotechnol. 2012, 23, 174–181; https://doi.org/10.1016/j.copbio.2011.08.007.Search in Google Scholar PubMed

3. Martins, S., Mussatto, S. I., Martínez-Avila, G., Montañez-Saenz, J. Biotechnol. Adv. 2011, 29, 365–375; https://doi.org/10.1016/j.biotechadv.2011.01.008.Search in Google Scholar PubMed

4. Leopoldini, M., Russo, N., Toscano, M. Food Chem. 2011, 125, 288–306; https://doi.org/10.1016/j.foodchem.2010.08.012.Search in Google Scholar

5. Harborne, J. B., Baxter, H., Moss, G. P. Phytochemical dictionary: Handbook of Bioactive Compounds from Plants, 2nd ed.; Taylor & Francis: London, 1999.Search in Google Scholar

6. Dai, J., Mumper, R. J. Molecules 2010, 15, 7313–7352; https://doi.org/10.3390/molecules15107313.Search in Google Scholar PubMed PubMed Central

7. Scalbert, A., Johnson, I. T., Saltmarsh, M. Am. J. Clin. Nutr. 2005, 81, 215S–217S; https://doi.org/10.1093/ajcn/81.1.215s.Search in Google Scholar

8. Craft, B. D., Kerrihard, A. L., Amarowicz, R., Pegg, R. B. Compr. Rev. Food Sci. Food Saf. 2012, 11, 148–173; https://doi.org/10.1111/j.1541-4337.2011.00173.x.Search in Google Scholar

9. Kostyuk, V., Potapovich, A., De Luca, C. Curr. Drug Metabol. 2010, 11, 414–424; https://doi.org/10.2174/138920010791526033.Search in Google Scholar PubMed

10. Zhang, L., Ravipati, A. S., Koyyalamudi, S. R., Jeong, S., Reddy, N., Smith, P. T., Bartlett, J., Shanmugam, K., Münch, G., Wu, M. J. J. Agric. Food Chem. 2011, 59, 12361–12367; https://doi.org/10.1021/jf203146e.Search in Google Scholar PubMed

11. Jin, X.-H., Ohgami, K., Shiratori, K., Suzuki, Y., Koyama, Y., Yoshida, K., Ilieva, I., Tanaka, T., Onoe, K., Ohno, S. Exp. Eye Res. 2006, 82, 860–867; https://doi.org/10.1016/j.exer.2005.10.024.Search in Google Scholar PubMed

12. Rauha, J.-P., Remes, S., Heinonen, M., Hopia, A., Kaehkoenen, M., Kujala, T., Pihlaja, K., Vuorela, H., Vuorela, P. Int. J. Food Microbiol. 2000, 56, 3–12; https://doi.org/10.1016/s0168-1605(00)00218-x.Search in Google Scholar

13. Proestos, C., Boziaris, I. S., Nychas, G.-J. E., Komaitis, M. Food Chem. 2006, 95, 664–671; https://doi.org/10.1016/j.foodchem.2005.01.049.Search in Google Scholar

14. Hussain, T., Gupta, S., Adhami, V. M., Mukhtar, H. Int. J. Canc. 2005, 113, 660–669; https://doi.org/10.1002/ijc.20629.Search in Google Scholar

15. Sadik, C. D., Sies, H., Schewe, T. Biochem. Pharmacol. 2003, 65, 773–781; https://doi.org/10.1016/s0006-2952(02)01621-0.Search in Google Scholar

16. Galati, G., O’Brien, P. J. Free Radical Biol. Med. 2004, 37, 287–303; https://doi.org/10.1016/j.freeradbiomed.2004.04.034.Search in Google Scholar PubMed

17. Pieme, C. A., Penlap, V. N., Ngogang, J., Costache, M. Toxicol. Pharmacol. 2010, 29, 223–228; https://doi.org/10.1016/j.etap.2010.01.003.Search in Google Scholar PubMed

18. Robins, R. J. J. Agric. Food Chem. 2003, 51, 2866–2887.10.1021/jf026182tSearch in Google Scholar PubMed

19. Kim, K.-H., Tsao, R., Yang, R., Cui, S. W. Food Chem. 2006, 95, 466–473; https://doi.org/10.1016/j.foodchem.2005.01.032.Search in Google Scholar

20. Cos, P., Rajan, P., Vedernikova, I., Calomme, M., Pieters, L., Vlietinck, A. J., Augustyns, K., Haemers, A., Berghe, D. V. Free Radic. Res. 2002, 36, 711–716; https://doi.org/10.1080/10715760290029182.Search in Google Scholar PubMed

21. Eun, H. J., Sung Ran, K., Kyeong, H., Tae Youl, H. J. Agric. Food Chem. 2007, 55, 9800–9804.10.1021/jf0714463Search in Google Scholar PubMed

22. Staunton, J., Weissman, K. J. Nat. Prod. Rep. 2001, 18, 380–416; https://doi.org/10.1039/a909079g.Search in Google Scholar

23. Koskinen, A. M. P., Karisalmi, K. Chem. Soc. Rev. 2005, 34, 677–690; https://doi.org/10.1039/b417466f.Search in Google Scholar

24. Fugmann, B., Ed. Römpp-Lexikon Naturstoffe; Georg Thieme Verlag: Stuttgart, New York, 1997.Search in Google Scholar

25. Harris, T. M., Harris, C. M. Tetrahedron 1977, 33, 2159–2185; https://doi.org/10.1016/0040-4020(77)80001-x.Search in Google Scholar

26. Murray, T. P., Harris, T. M. J. Am. Chem. Soc. 1972, 94, 8253–55; https://doi.org/10.1021/ja00778a065.Search in Google Scholar

27. Harris, C. M., Roberson, J. S., Harris, T. M. J. Am. Chem. Soc. 1976, 98, 5380–5386; https://doi.org/10.1021/ja00433a053.Search in Google Scholar

28. Harris, T. M., Hay, J. V. J. Am. Chem. Soc. 1977, 99, 1631–1637; https://doi.org/10.1021/ja00447a058.Search in Google Scholar

29. Hubbard, J. S., Harris, T. M. Tetrahedron Lett. 1978, 47, 4601–4602; https://doi.org/10.1016/s0040-4039(01)85681-1.Search in Google Scholar

30. Sandifer, R. M., Bhattacharya, A. K., Harris, T. M. J. Org. Chem. 1981, 46, 2260–2267; https://doi.org/10.1021/jo00324a012.Search in Google Scholar

31. Gilbreath, S. G., Harris, C. M., Harris, T. M. J. Am. Chem. Soc. 1988, 110, 6172–6179; https://doi.org/10.1021/ja00226a036.Search in Google Scholar PubMed

32. Chan, T.-H., Brownbridge, P. J. Am. Chem. Soc. 1980, 102, 3534–3538; https://doi.org/10.1021/ja00530a038.Search in Google Scholar

33. Langer, P. Synthesis 2002, 441–459; https://doi.org/10.1055/s-2002-20954.Search in Google Scholar

34. Feist, H., Langer, P. Synthesis 2007, 327–347; https://doi.org/10.1055/s-2006-958958.Search in Google Scholar

35. Karapetyan, G., Dang, T. T., Sher, M., Ghochikyan, T. V., Saghyan, A. S., Langer, P. Curr. Org. Chem. 2012, 16, 557–565.10.2174/138527212799859372Search in Google Scholar

36. Chan, T.-H., Stössel, D. J. Org. Chem. 1988, 53, 4901–4908; https://doi.org/10.1021/jo00258a048.Search in Google Scholar

37. Chan, T.-H., Stössel, D. J. Org. Chem. 1986, 51, 2423–2428; https://doi.org/10.1021/jo00363a004.Search in Google Scholar

38. Sher, M., Langer, P. Synlett 2008, 1050–1052; https://doi.org/10.1055/s-2008-1072675.Search in Google Scholar

39. Lubbe, M., Langer, P. Org. Biomol. Chem. 2010, 881–885; https://doi.org/10.1039/b918466j.Search in Google Scholar PubMed

40. Brownbridge, P., Chan, T. H., Brook, M. A., Kang, G. J. Can. J. Chem. 1983, 61, 688–693; https://doi.org/10.1139/v83-127.Search in Google Scholar

41. Lubbe, M., Gütlein, J.-P., Reinke, H., Langer, P. Synlett 2008, 2671–2673; https://doi.org/10.1055/s-0028-1083524.Search in Google Scholar

42. Wilson, B. D. Synthesis 1992, 3, 283–284; https://doi.org/10.1055/s-1992-26092.Search in Google Scholar

43. Heilbron, I., Jones, E. R, Julia, H. M. J. Chem. Soc. 1949, 1430–1434; https://doi.org/10.1039/jr9490001430.Search in Google Scholar

44. Searles, S., Sanchez, R. A., Soulen, R. L., Kundinger, D. G. J. Org. Chem. 1967, 32, 2655–2660; https://doi.org/10.1021/jo01284a001.Search in Google Scholar

45. Banville, J., Brassard, P. J. Chem. Soc. Perkin Trans 1976, 1, 1852–1856; https://doi.org/10.1039/p19760001852.Search in Google Scholar

46. Barker, D., Brimble, M. A., Do, P., Turner, P. Tetrahedron 2003, 59, 2441–2449; https://doi.org/10.1016/s0040-4020(03)00291-6.Search in Google Scholar

47. Rykov, S. V., Nikiforov, G. A., Skakovskii, E. D. Izv. Akad. Nauk SSSR Ser. Khim 1987, 2601–2603.Search in Google Scholar

48. Krägeloh, K., Simchen, G. Synthesis 1981, 30–32; https://doi.org/10.1055/s-1981-29319.Search in Google Scholar

49. Sheldrick, G. M. Shelxs/l-97, Programs for Crystal Structure Determination; University of Göttingen: Göttingen (Germany), 1997.Search in Google Scholar

50. Sheldrick, G. M. Acta Crystallogr. 1990, A46, 467–473; https://doi.org/10.1107/s0108767390000277.Search in Google Scholar

51. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.Search in Google Scholar

Received: 2020-06-30
Accepted: 2020-10-15
Published Online: 2020-12-10
Published in Print: 2021-01-27

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 15.9.2025 from https://www.degruyterbrill.com/document/doi/10.1515/znb-2020-0114/html
Scroll to top button