Regioselective synthesis of salicylates and acetophenones by formal [3+3]-cyclocondensations of 3-oxoorthoesters with 1,3-bis(trimethylsilyloxy)-1,3-butadienes
Abstract
A variety of 4-methoxysalicylates and related polyketide-type phenols are regioselectively prepared by formal [3+3] cyclocondensations of 1,3-bis(trimethylsilyloxy)-1,3-butadienes with 3-oxo-orthoesters. Cycloalkyl-substituted salicylates were prepared for the first time.
Acknowledgements
Financial support by the State of Mecklenburg-Vorpommern is gratefully acknowledged.
Author contributions: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.
Research funding: State of Mecklenburg-Vorpommern.
Conflict of interest statement: The authors declare no conflicts of interest regarding this article.
References
1. Quideau, S., Deffieux, D., Douat-Casassus, C., Pouységu, L. Angew. Chem. Int. Ed. 2011, 50, 586–621; https://doi.org/10.1002/anie.201000044.Search in Google Scholar PubMed
2. Daglia, M. Curr. Opin. Biotechnol. 2012, 23, 174–181; https://doi.org/10.1016/j.copbio.2011.08.007.Search in Google Scholar PubMed
3. Martins, S., Mussatto, S. I., Martínez-Avila, G., Montañez-Saenz, J. Biotechnol. Adv. 2011, 29, 365–375; https://doi.org/10.1016/j.biotechadv.2011.01.008.Search in Google Scholar PubMed
4. Leopoldini, M., Russo, N., Toscano, M. Food Chem. 2011, 125, 288–306; https://doi.org/10.1016/j.foodchem.2010.08.012.Search in Google Scholar
5. Harborne, J. B., Baxter, H., Moss, G. P. Phytochemical dictionary: Handbook of Bioactive Compounds from Plants, 2nd ed.; Taylor & Francis: London, 1999.Search in Google Scholar
6. Dai, J., Mumper, R. J. Molecules 2010, 15, 7313–7352; https://doi.org/10.3390/molecules15107313.Search in Google Scholar PubMed PubMed Central
7. Scalbert, A., Johnson, I. T., Saltmarsh, M. Am. J. Clin. Nutr. 2005, 81, 215S–217S; https://doi.org/10.1093/ajcn/81.1.215s.Search in Google Scholar
8. Craft, B. D., Kerrihard, A. L., Amarowicz, R., Pegg, R. B. Compr. Rev. Food Sci. Food Saf. 2012, 11, 148–173; https://doi.org/10.1111/j.1541-4337.2011.00173.x.Search in Google Scholar
9. Kostyuk, V., Potapovich, A., De Luca, C. Curr. Drug Metabol. 2010, 11, 414–424; https://doi.org/10.2174/138920010791526033.Search in Google Scholar PubMed
10. Zhang, L., Ravipati, A. S., Koyyalamudi, S. R., Jeong, S., Reddy, N., Smith, P. T., Bartlett, J., Shanmugam, K., Münch, G., Wu, M. J. J. Agric. Food Chem. 2011, 59, 12361–12367; https://doi.org/10.1021/jf203146e.Search in Google Scholar PubMed
11. Jin, X.-H., Ohgami, K., Shiratori, K., Suzuki, Y., Koyama, Y., Yoshida, K., Ilieva, I., Tanaka, T., Onoe, K., Ohno, S. Exp. Eye Res. 2006, 82, 860–867; https://doi.org/10.1016/j.exer.2005.10.024.Search in Google Scholar PubMed
12. Rauha, J.-P., Remes, S., Heinonen, M., Hopia, A., Kaehkoenen, M., Kujala, T., Pihlaja, K., Vuorela, H., Vuorela, P. Int. J. Food Microbiol. 2000, 56, 3–12; https://doi.org/10.1016/s0168-1605(00)00218-x.Search in Google Scholar
13. Proestos, C., Boziaris, I. S., Nychas, G.-J. E., Komaitis, M. Food Chem. 2006, 95, 664–671; https://doi.org/10.1016/j.foodchem.2005.01.049.Search in Google Scholar
14. Hussain, T., Gupta, S., Adhami, V. M., Mukhtar, H. Int. J. Canc. 2005, 113, 660–669; https://doi.org/10.1002/ijc.20629.Search in Google Scholar
15. Sadik, C. D., Sies, H., Schewe, T. Biochem. Pharmacol. 2003, 65, 773–781; https://doi.org/10.1016/s0006-2952(02)01621-0.Search in Google Scholar
16. Galati, G., O’Brien, P. J. Free Radical Biol. Med. 2004, 37, 287–303; https://doi.org/10.1016/j.freeradbiomed.2004.04.034.Search in Google Scholar PubMed
17. Pieme, C. A., Penlap, V. N., Ngogang, J., Costache, M. Toxicol. Pharmacol. 2010, 29, 223–228; https://doi.org/10.1016/j.etap.2010.01.003.Search in Google Scholar PubMed
18. Robins, R. J. J. Agric. Food Chem. 2003, 51, 2866–2887.10.1021/jf026182tSearch in Google Scholar PubMed
19. Kim, K.-H., Tsao, R., Yang, R., Cui, S. W. Food Chem. 2006, 95, 466–473; https://doi.org/10.1016/j.foodchem.2005.01.032.Search in Google Scholar
20. Cos, P., Rajan, P., Vedernikova, I., Calomme, M., Pieters, L., Vlietinck, A. J., Augustyns, K., Haemers, A., Berghe, D. V. Free Radic. Res. 2002, 36, 711–716; https://doi.org/10.1080/10715760290029182.Search in Google Scholar PubMed
21. Eun, H. J., Sung Ran, K., Kyeong, H., Tae Youl, H. J. Agric. Food Chem. 2007, 55, 9800–9804.10.1021/jf0714463Search in Google Scholar PubMed
22. Staunton, J., Weissman, K. J. Nat. Prod. Rep. 2001, 18, 380–416; https://doi.org/10.1039/a909079g.Search in Google Scholar
23. Koskinen, A. M. P., Karisalmi, K. Chem. Soc. Rev. 2005, 34, 677–690; https://doi.org/10.1039/b417466f.Search in Google Scholar
24. Fugmann, B., Ed. Römpp-Lexikon Naturstoffe; Georg Thieme Verlag: Stuttgart, New York, 1997.Search in Google Scholar
25. Harris, T. M., Harris, C. M. Tetrahedron 1977, 33, 2159–2185; https://doi.org/10.1016/0040-4020(77)80001-x.Search in Google Scholar
26. Murray, T. P., Harris, T. M. J. Am. Chem. Soc. 1972, 94, 8253–55; https://doi.org/10.1021/ja00778a065.Search in Google Scholar
27. Harris, C. M., Roberson, J. S., Harris, T. M. J. Am. Chem. Soc. 1976, 98, 5380–5386; https://doi.org/10.1021/ja00433a053.Search in Google Scholar
28. Harris, T. M., Hay, J. V. J. Am. Chem. Soc. 1977, 99, 1631–1637; https://doi.org/10.1021/ja00447a058.Search in Google Scholar
29. Hubbard, J. S., Harris, T. M. Tetrahedron Lett. 1978, 47, 4601–4602; https://doi.org/10.1016/s0040-4039(01)85681-1.Search in Google Scholar
30. Sandifer, R. M., Bhattacharya, A. K., Harris, T. M. J. Org. Chem. 1981, 46, 2260–2267; https://doi.org/10.1021/jo00324a012.Search in Google Scholar
31. Gilbreath, S. G., Harris, C. M., Harris, T. M. J. Am. Chem. Soc. 1988, 110, 6172–6179; https://doi.org/10.1021/ja00226a036.Search in Google Scholar PubMed
32. Chan, T.-H., Brownbridge, P. J. Am. Chem. Soc. 1980, 102, 3534–3538; https://doi.org/10.1021/ja00530a038.Search in Google Scholar
33. Langer, P. Synthesis 2002, 441–459; https://doi.org/10.1055/s-2002-20954.Search in Google Scholar
34. Feist, H., Langer, P. Synthesis 2007, 327–347; https://doi.org/10.1055/s-2006-958958.Search in Google Scholar
35. Karapetyan, G., Dang, T. T., Sher, M., Ghochikyan, T. V., Saghyan, A. S., Langer, P. Curr. Org. Chem. 2012, 16, 557–565.10.2174/138527212799859372Search in Google Scholar
36. Chan, T.-H., Stössel, D. J. Org. Chem. 1988, 53, 4901–4908; https://doi.org/10.1021/jo00258a048.Search in Google Scholar
37. Chan, T.-H., Stössel, D. J. Org. Chem. 1986, 51, 2423–2428; https://doi.org/10.1021/jo00363a004.Search in Google Scholar
38. Sher, M., Langer, P. Synlett 2008, 1050–1052; https://doi.org/10.1055/s-2008-1072675.Search in Google Scholar
39. Lubbe, M., Langer, P. Org. Biomol. Chem. 2010, 881–885; https://doi.org/10.1039/b918466j.Search in Google Scholar PubMed
40. Brownbridge, P., Chan, T. H., Brook, M. A., Kang, G. J. Can. J. Chem. 1983, 61, 688–693; https://doi.org/10.1139/v83-127.Search in Google Scholar
41. Lubbe, M., Gütlein, J.-P., Reinke, H., Langer, P. Synlett 2008, 2671–2673; https://doi.org/10.1055/s-0028-1083524.Search in Google Scholar
42. Wilson, B. D. Synthesis 1992, 3, 283–284; https://doi.org/10.1055/s-1992-26092.Search in Google Scholar
43. Heilbron, I., Jones, E. R, Julia, H. M. J. Chem. Soc. 1949, 1430–1434; https://doi.org/10.1039/jr9490001430.Search in Google Scholar
44. Searles, S., Sanchez, R. A., Soulen, R. L., Kundinger, D. G. J. Org. Chem. 1967, 32, 2655–2660; https://doi.org/10.1021/jo01284a001.Search in Google Scholar
45. Banville, J., Brassard, P. J. Chem. Soc. Perkin Trans 1976, 1, 1852–1856; https://doi.org/10.1039/p19760001852.Search in Google Scholar
46. Barker, D., Brimble, M. A., Do, P., Turner, P. Tetrahedron 2003, 59, 2441–2449; https://doi.org/10.1016/s0040-4020(03)00291-6.Search in Google Scholar
47. Rykov, S. V., Nikiforov, G. A., Skakovskii, E. D. Izv. Akad. Nauk SSSR Ser. Khim 1987, 2601–2603.Search in Google Scholar
48. Krägeloh, K., Simchen, G. Synthesis 1981, 30–32; https://doi.org/10.1055/s-1981-29319.Search in Google Scholar
49. Sheldrick, G. M. Shelxs/l-97, Programs for Crystal Structure Determination; University of Göttingen: Göttingen (Germany), 1997.Search in Google Scholar
50. Sheldrick, G. M. Acta Crystallogr. 1990, A46, 467–473; https://doi.org/10.1107/s0108767390000277.Search in Google Scholar
51. Sheldrick, G. M. Acta Crystallogr. 2015, C71, 3–8.Search in Google Scholar
© 2020 Walter de Gruyter GmbH, Berlin/Boston
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Regioselective synthesis of salicylates and acetophenones by formal [3+3]-cyclocondensations of 3-oxoorthoesters with 1,3-bis(trimethylsilyloxy)-1,3-butadienes
- Crystal structure, Hirshfeld surface analysis and Pixel calculations of the monohydrate of (E)-3-(2-hydroxy-5-methoxyphenyl)-1-(2-hydroxy-4-methoxyphenyl)prop-2-en-1-one: occurrence of π interactions
- Two-dimensional lanthanide(III) coordination polymers: solvothermal synthesis, crystal structure, and stability
- Single-crystal X-ray structure determinations of vardenafil, vardenafil dihydrate, vardenafil monohydrochloride trihydrate and vardenafil dihydrochloride hexahydrate
- Assembly, photocatalytic and fluorescence properties of three new coordination complexes of zinc(II) and nickel(II) with two kinds of flexible bis(pyridyl)-bis(amide) ligands
- Two luminescent d10 metal coordination polymers based on 3-nitro-5-(pyridin-3-yl)benzoic acid
- High-pressure synthesis of REB5O8(OH)2 (RE = Ho, Er, Tm)
- A novel three-dimensional cadmium sulfate-based inorganic-organic hybrid polymer with green photoluminescence
Articles in the same Issue
- Frontmatter
- In this issue
- Research Articles
- Regioselective synthesis of salicylates and acetophenones by formal [3+3]-cyclocondensations of 3-oxoorthoesters with 1,3-bis(trimethylsilyloxy)-1,3-butadienes
- Crystal structure, Hirshfeld surface analysis and Pixel calculations of the monohydrate of (E)-3-(2-hydroxy-5-methoxyphenyl)-1-(2-hydroxy-4-methoxyphenyl)prop-2-en-1-one: occurrence of π interactions
- Two-dimensional lanthanide(III) coordination polymers: solvothermal synthesis, crystal structure, and stability
- Single-crystal X-ray structure determinations of vardenafil, vardenafil dihydrate, vardenafil monohydrochloride trihydrate and vardenafil dihydrochloride hexahydrate
- Assembly, photocatalytic and fluorescence properties of three new coordination complexes of zinc(II) and nickel(II) with two kinds of flexible bis(pyridyl)-bis(amide) ligands
- Two luminescent d10 metal coordination polymers based on 3-nitro-5-(pyridin-3-yl)benzoic acid
- High-pressure synthesis of REB5O8(OH)2 (RE = Ho, Er, Tm)
- A novel three-dimensional cadmium sulfate-based inorganic-organic hybrid polymer with green photoluminescence