Startseite QSPR modeling of organic semiconductor building blocks using topological indices
Artikel
Lizenziert
Nicht lizenziert Erfordert eine Authentifizierung

QSPR modeling of organic semiconductor building blocks using topological indices

  • Hui Wang , Shamaila Yousaf ORCID logo , Khadeeja Firdous und Adnan Aslam ORCID logo EMAIL logo
Veröffentlicht/Copyright: 28. Oktober 2025

Abstract

Topological indices are numerical descriptors that capture key structural information of molecular graphs, enabling the quantitative prediction of chemical properties. This study employs five degree-based topological indices to develop quantitative structure property relationship (QSPR) models for twenty fundamental building blocks of organic semiconductors. Strong correlations are established between these indices and critical physicochemical properties including melting point, boiling point, and molecular mass using linear, quadratic, and logarithmic regression approaches. Molecular mass and boiling point are found to be particularly well predicted, with correlation coefficients exceeding 0.99 in multiple models. The results are validated against experimental data, confirming the practical utility of the proposed models. These findings underscore the value of topological indices as efficient computational tools for the high-throughput screening and rational design of organic semiconductor materials.


Corresponding author: Adnan Aslam, Department of Natural Sciences and Humanities, University of Engineering and Technology, Lahore (RCET), Lahore, Pakistan, E-mail: 

  1. Research ethics: Not applicable.

  2. Informed consent: Not applicable.

  3. Author contributions: All authors have accepted responsibility for the entire content of this manuscript and approved its submission.

  4. Use of Large Language Models, AI and Machine Learning Tools: None declared.

  5. Conflict of interest: The author states no conflict of interest.

  6. Research funding: This research project is supported by Anhui Provincial Innovation Team (2024AH 010011), Key Scientific Research Project of Anhui Province (2024 AH 050611)

  7. Data availability: Not applicable.

References

[1] D. Yan, H. Wang, and B. Du, Introduction to Organic Semiconductor Heterojunctions, Hoboken, New Jersey, John Wiley & Sons Inc, 2010.10.1002/9780470825969Suche in Google Scholar

[2] V. Bhat, C. P. Callaway, and C. Risko, “Computational approaches for organic semiconductors: from chemical and physical understanding to predicting new materials,” Chem. Rev., vol. 123, no. 12, pp. 7498–7547, 2023, https://doi.org/10.1021/acs.chemrev.2c00704.Suche in Google Scholar PubMed

[3] X. Xu, Y. Zhao, and Y. Liu, “Wearable electronics based on stretchable organic semiconductors,” Small, vol. 19, no. 20, 2023, Art. no. 2206309, https://doi.org/10.1002/smll.202206309.Suche in Google Scholar PubMed

[4] I. Gutman, “Degree-based topological indices,” Croat. Chem. Acta, vol. 86, no. 4, pp. 351–361, 2013, https://doi.org/10.5562/cca2294.Suche in Google Scholar

[5] I. Gutman, B. Furtula, and I. Redzepovic, “On topological indices and their reciprocals,” MATCH Commun. Math. Comput. Chem., vol. 91, no. 2, pp. 287–297, 2024, https://doi.org/10.46793/match.91-2.287g.Suche in Google Scholar

[6] M. V. Jacob, “Organic semiconductors: past, present and future,” Electronics, vol. 3, no. 4, pp. 594–597, 2014, https://doi.org/10.3390/electronics3040594.Suche in Google Scholar

[7] I. Gutman and N. Trinajstic, “Graph theory and molecular orbitals. Total φ-electron energy of alternant hydrocarbons,” Chem. Phys. Lett., vol. 17, no. 4, pp. 535–538, 1972, https://doi.org/10.1016/0009-2614(72)85099-1.Suche in Google Scholar

[8] B. Furtula, A. Graovac, and D. Vukiĉević, “Augmented Zagreb index,” J. Math. Chem., vol. 48, pp. 370–380, 2010, https://doi.org/10.1007/s10910-010-9677-3.Suche in Google Scholar

[9] D. Amic, D. Belo, B. Lucic, S. Nikolic, and N. Trinajstic, “The vertex-connectivity index revisited,” J. Chem. Inf. Comput. Sci., vol. 38, no. 5, pp. 819–822, 1998, https://doi.org/10.1021/ci980039b.Suche in Google Scholar

[10] B. Zhou and N. Trinajstic, “On a novel connectivity index,” J. Math. Chem., vol. 46, no. 4, pp. 1252–1270, 2009, https://doi.org/10.1007/s10910-008-9515-z.Suche in Google Scholar

[11] M. Randic, “Characterization of molecular branching,” J. Am. Chem. Soc., vol. 97, no. 23, pp. 6609–6615, 1975, https://doi.org/10.1021/ja00856a001.Suche in Google Scholar

[12] V. S. Shegehalli and R. Kanabur, “Arithmetic-geometric indices of path graph,” J. Math. Comput. Sci., vol. 16, pp. 19–24, 2015.Suche in Google Scholar

[13] J. M. Rodroguez, J. L. Sánchez, J. M. Sigarreta, and E. Tourís, “Bounds on the arithmetic-geometric index,” Symmetry, vol. 13, no. 4, p. 689, 2021, https://doi.org/10.3390/sym13040689.Suche in Google Scholar

[14] I. Gutman, J. Tošović, S. Radenkovic, and S. Markovic, “On atom-bond connectivity index and its chemical applicability,” Indian J. Chem., Sect. A, vol. 51, pp. 690–694, 2012.Suche in Google Scholar

[15] Gutman, “Multiplicative Zagreb indices of trees,” Bull. Inter. Math. Virtual Inst., vol. 1, pp. 13–19, 2011.Suche in Google Scholar

[16] A. Ali, B. Furtula, I. Gutman, and D. Vukičević, “Augmented Zagreb index: extermal results and bounds,” MATCH Commun. Math. Comput. Chem., vol. 85, pp. 211–244, 2021.Suche in Google Scholar

[17] M. Tongan, A. Y. S. U. N. Yurttas, A. S. Çevik, and I. N. Cangul, “Zagreb indices and multiplicative Zagreb indices of double graphs of subdivision graphs,” TWMS J. Appl. Eng. Math., vol. 9, no. 2, pp. 404–412, 2019.Suche in Google Scholar

[18] A. Thamilisai, A. Shobana, and V. M. Revathi, “Randiĉ index in various graphs,” in API Conference Proceedings, vol. 2831, API Publishing, 2023.10.1063/5.0172441Suche in Google Scholar

[19] S. Fajtlwoicz, “On conjectures of Graffiti-Π,” Congr. Numer., vol. 60, pp. 187–197, 1987.Suche in Google Scholar

[20] M. Cancan, S. Ediz, and M. R. Farahani, “On ve-degree atom-bond connectivity, sum-connectivity, geometric-arithmetic and harmonic indices of copper oxide,” Eurasian Chem. Commun., vol. 2, no. 5, pp. 641–645, 2020, https://doi.org/10.33945/sami/ecc.2020.5.11.Suche in Google Scholar

[21] A. Ali, K. C. Das, and S. Akhter, “On the extremal graphs for second Zagreb index with fixed number of vertices and cyclomatic number,” Miskolc Math. Notes, vol. 23, no. 1, pp. 41–50, 2022, https://doi.org/10.18514/mmn.2022.2382.Suche in Google Scholar

[22] B. Horoldagva and I. Gutman, “On some vertex-degree-based graph invariants,” MATCH Commun. Math. Comput. Chem., vol. 65, no. 3, pp. 723–730, 2011.Suche in Google Scholar

[23] X. Li and Y. Shi, “A survey on the Randic index,” MATCH Commun. Math. Comput. Chem., vol. 59, no. 1, pp. 127–156, 2008.Suche in Google Scholar

[24] M. I. Stankevich, I. V. Stankevich, and N. S. Zefirov, “Topological indices in organic chemistry,” Russ. Chem. Rev., vol. 57, no. 3, p. 191, 1988, https://doi.org/10.1070/rc1988v057n03abeh003344.Suche in Google Scholar

[25] P. M. Shihab, T. K. Mathew Varkey, L. Vincent, T. L. John, A. Riyas, and T. J. Rajesh Kumar, “Neighborhood number-based topological indices of graphene,” Polycyclic Aromat. Compd., vol. 44, no. 4, pp. 2733–2751, 2023, https://doi.org/10.1080/10406638.2023.2221762.Suche in Google Scholar

[26] O. C. Havare and K. H. Ali, “Computation of the forgotten topological index and co-index for carbon base nanomaterial,” Polycyclic Aromat. Compd., vol. 42, no. 6, pp. 3488–3500, 2020, https://doi.org/10.1080/10406638.2020.1866621.Suche in Google Scholar

[27] O. Colakoglu Havare, “Reformulated Zagreb indices of some cycle-related graphs and linear [n]-Phenylenes,” Osmaniye Korkut Ata Üniv. Fen Biliml. Derg., vol. 7, no. 1, pp. 33–45, 2024. https://doi.org/10.47495/okufbed.1288066.Suche in Google Scholar

[28] D. S. Cao, Y. Z. Liang, Q. S. Xu, H. D. Li, and X. Chen, “A new strategy of outlier detection for QSAR/QSPR,” J. Comput. Chem., vol. 31, no. 3, pp. 592–602, 2010, https://doi.org/10.1002/jcc.21351.Suche in Google Scholar PubMed

[29] A. R. Katritzky and E. V. Gordeeva, “Traditional topological indexes vs electronic, geometrical, and combined molecular descriptors in QSAR/QSPR research,” J. Chem. Inf. Comput. Sci., vol. 33, no. 6, pp. 835–857, 1993, https://doi.org/10.1021/ci00016a005.Suche in Google Scholar PubMed

[30] J. C. Dearden, “The use of topological indices in QSAR and QSPR modeling,” in Advances in QSAR Modeling: Challenges and Advances in Computational Chemistry and Physics, vol. 24, K. Roy, Ed., Cham, Springer International Publishing, 2017, pp. 57–88.10.1007/978-3-319-56850-8_2Suche in Google Scholar

Received: 2025-08-31
Accepted: 2025-10-10
Published Online: 2025-10-28

© 2025 Walter de Gruyter GmbH, Berlin/Boston

Heruntergeladen am 28.10.2025 von https://www.degruyterbrill.com/document/doi/10.1515/zna-2025-0287/pdf
Button zum nach oben scrollen